La seguridad aérea es de interés público y afecta a toda la sociedad (Javier Aguado del Moral)


In times of universal deceit, telling the truth becomes a revolutionary act (George Orwell)


Cuando el sabio señala la luna, el necio se queda mirando el dedo (Confucio)

jueves, 26 de diciembre de 2013

FELICES FIESTAS Y FELIZ AÑO NUEVO 2014




Con esta impresionante foto publicada por Aviation Addiction en su cuenta de Twitter, de un A-380 operando en un aeropuerto en el que no se vislumbran obstáculos ni para despegar ni para aterrizar y que, por lo tanto, nunca podría ser hecha en el Aeropuerto de Madrid-Barajas, el equipo de Las mentiras de Barajas les desea unas felices fiestas navideñas y un feliz, próspero y seguro Año Nuevo 2014.

viernes, 20 de diciembre de 2013

REFLEXIONES SOBRE EL ACCIDENTE DE BARAJAS DEL 5 DE DICIEMBRE DE 2013



El accidente que sufrió el Boeing 767-332ER (WL), de la compañía Delta Air Lines, en el aterrizaje por la pista 32L, tras salirse de la pista, atravesar alguna rodadura y detenerse en una zona de hierba, como se observa en la trayectoria representada sobre la fotografía aérea de la zona y publicada en Flickr, pudo ser uno de los más trágicos accidentes de la historia de la aviación, si la aeronave no se hubiese detenido y hubiera continuado su marcha hacia la Terminal 4 o si en su camino se hubiese encontrado con los aviones que esperan para despegar por las pistas 36L y 36R. Afortunadamente el tráfico aéreo a las 11 de la mañana no es el que hay a las 8, ni el que había a esa misma hora hace unos años.

Lo llevamos avisando desde hace varios años, que los embudos o espacios de Seguridad establecidos para los aterrizajes largos de las pistas 32R y 32L en configuración Norte y la 18R y 18L en configuración Sur, tienen riesgo de colisión con las aeronaves estacionadas que aguardan haciendo cola para el despegue por las pistas 36R y 36L en configuración Norte y las pistas 14R y 14L en configuración Sur. AENA alega que es posible despejar la zona de riesgo cuando se declare la emergencia. Y nos preguntamos ¿Es acaso viable que en los escasos segundos en los que puede producirse un fallo en el aterrizaje de una aeronave se pueda dejar libre toda la Zona de Protección de Pistas (RPZ) que actualmente es invadida permanentemente por naves esperando y haciendo cola para despegar? Esta situación de riesgo se empeora gravemente al haber ubicado en estas RPZ (que deberían permanecer libres del más mínimo objeto que no sea frangible tal y como establece la FAA) las Plataformas de Deshielo de Aeronaves y sus respectivas maquinarias, tal y como puede comprobar en el actual Plano de Rodadura.

En el artículo publicado en Aviación Digital la semana pasada ¿Pudo el DL415 haber utilizado el EMAS de la 32L de LEMD?, se especula sobre las razones que pudieron llevar a los pilotos a sacra al avión de la pista y no hacer uso del Sistema de Frenado de Emergencia o EMAS (Engineered Materials Arresting System).


El EMAS es un sistema para frenar aquellos aviones que sobrepasen el extremo de la pista sin que sufran daños estructurales. Está situado como prolongación de la pista y tiene la misma anchura de ésta. Está formado por bloques de hormigón granular de deformación progresiva que se aplasta bajo el peso del avión que sobrepase el umbral de la pista, absorbiendo la energía del avión en movimiento. No obstante, es suficientemente rígida para que los vehículos de emergencia puedan conducir sobre ella sin sufrir ningún tipo de deformaciones. La resistencia proporcionada por el material deformado por el aplastamiento decelera el avión y lo detiene dentro de los límites del área de seguridad de extremo de pista.

Este sistema supone una mejora de la seguridad operacional en caso de salida por final de pista y fue instalado en la RESA (Runway End Safety Area) de las pistas 32L y 32R, concretamente a 3.318 m del umbral 32L y a 3.300 m del umbral 32R respectivamente, en el año 2008. Es un sistema de un solo uso y una vez lo haya sido utilizado debe ser restituido para garantizar las especificaciones de frenado.

En SKYbrary hay disponible información detallada sobre el Sistema de Frenado de Emergencia o EMAS (Engineered Materials Arresting System). Y no olvidemos que si el avión no se detiene sobre el EMAS y continúa su marcha, el destino es la Terminal 4 o los aviones que se dirigen al despegue desde la pista 36L o 36R.

En el citado artículo se indica que:

Un dato esencial a tener en cuenta, es que la aeronave no había tenido tiempo de deshacerse del combustible, al quedarse sin sistemas hidráulicos y sufrir un agujero que atravesaba un plano, con lo añadido a que su peso podría rondar los 185.000 kgs, aterrizar lo antes posible parece que era una solución evidente. Eso sí, con la dificultad de parar esta "bala" a tiempo..., con los frenos muy dañados o inutilizados. Pero se hizo con un resultado excelente.

Para juzgar si la decisión del piloto al mando fue a priori la acertada o no y cuáles fueron las razones que lo llevaron a tomarla habría que conocer, en primer lugar, si este piloto conoce los riesgos de Barajas. A posteriori no queda otra que felicitar al piloto al mando por la decisión y la correcta ejecución de la maniobra, a los controladores por la coordinación de la situación de emergencia, y a los servicios de emergencia por su rápida y efectiva actuación para evitar males mayores, ya que no hubo daños personales y el avión sólo sufrió daños menores.

Quizá fuera el factor económico, como indican en Aviación Digital, el que llevó al piloto al mando a no utilizar el EMAS. En el AIP del Aeropuerto de Madrid-
Barajas se establece que:

Una vez utilizado por una aeronave el sistema debe ser restituido a fin de garantizar las especificaciones de frenado en futuras utilizaciones. Por lo tanto, LA COMPAÑÍA OPERADORA DE LA AERONAVE QUE HA SUFRIDO LA SALIDA DEL FINAL DE PISTA DEBERA DISPONER DE LOS SEGUROS CORRESPONDIENTES QUE CUBRAN DICHOS DAÑOS, incluidos los de reparación del Sistema de frenado de emergencia (EMAS).

También cabe la posibilidad que el piloto no confiase en una parada plácida sobre el EMAS y, temiendo que los daños en el avión fueran mayores o el riesgo de que el combustible provocase una explosión de consecuencias fatales, por eso eligió detenerse sobre la tierra.

En el artículo se indica que la maniobra que realizó el comandante pudo estar motivada también por la duda de que a la velocidad que iba y la distancia de frenado necesaria, teniendo en cuenta también el peso combustible, hubiera sido suficiente con el EMAS, cuya longitud es de unos escasos 63,1 metros.

En cualquier caso y como apuntan en el artículo de Aviación Digital, el comandante, suponiendo que entrara en pista en el punto de contacto fijado máximo (algunas fuentes ya han señalado que el aterrizaje fue largo), y teniendo la 32L una longitud total de 3.988 mts, dispuso de un máximo de 47 segundos; si la toma de tierra se hizo con 2000 metros de pista por delante este tiempo se reduce a 24 segundos. Teniendo en cuenta que entre el despegue y el aterrizaje transcurrieron quince minutos, la tripulación dispuso de muy poco tiempo para la organización de los recursos en cabina, tras la declaración de la emergencia a bordo, y la coordinación con los controladores en tierra, que trabajarían a contrarreloj para despejar las pistas y rodaduras adyacentes de obstáculos. En esa situación la decisión de utilizar o no el EMAS fue tomada por instinto. Entendiendo por instinto en este contexto como la capacidad de tomar una decisión correcta en muy pocos segundos, y que se adquiere con el entrenamiento riguroso y continuo al que se someten. Y esto es un intangible que es difícil valorara a la hora de adquirir un billete para viajar en una compañía u otra, porque la seguridad sólo es posible valorarla en negativo, es decir, cuando no existe y afloran los riesgos y sus consecuencias.

Y coincidimos con la redacción de Aviación Digital en que una investigación a fondo es necesaria, en la que no sólo ofrezca una mera descripción de los hechos ocurridos, sino que se analicen a fondo las opciones de las que disponía el piloto, por qué descartó unas y por qué eligió otras.

domingo, 8 de diciembre de 2013

5 DE DICIEMBRE DE 2013: ACCIDENTE EN EL AEROPUERTO DE MADRID-BARAJAS


Observen esta fotografía


Ahora esta representación sobre una fotografía del Aeropuerto de Madrid-Barajas obtenida de Google Earth:


Lo que publicó una pasajera en su cuenta de Twitter:

#desastredeltaairlines vuelo Mad-NYork. @Delta hemos aterrizado en la tierra, no había frenos según comentarios pic.twitter.com/G3BKEo4hiw

Y ahora la descripción del accidente (fuentes: Aviación Digital, Datos técnicos ASN, The Aviation Herald, el País y otras fuentes anónimas):

Un Boeing 767-332ER (WL), vuelo DL415, operado por la compañía Delta Air Lines, despegó por la pista 36L del Aeropuerto de Madrid-Barajas (MAD) sobre las 11:22, hora local, con destino al Aeropuerto de Nueva York-JFK. El piloto al mando, después de darse cuenta de que había reventado uno de sus neumáticos y que los restos de la explosión habían afectado al ala derecha y al sistema hidráulico, decidió regresar de inmediato al aeródromo madrileño declarando aterrizaje de emergencia.

En estas imágenes, la primera subida por una pasajera en Twitter y la segunda tomada ya en tierra, se observa el boquete en el ala derecha del aparato.



Dado que no le funcionaron los frenos, la elevada velocidad que llevaba y la previsión de un aterrizaje largo por la pista 32L, el piloto, antes de finalizar la pista, decidió utilizar la última salida de ésta. El avión, tras atravesar alguna rodadura, se detuvo finalmente en una zona de hierba a las 11:30 hora local.

En estas fotografías se observa el avión detenido en tierra, la primera proporcionada por controladores en su cuenta de Twitter:



Al tomar tierra, el aparato sufrió problemas con el tren trasero y se declaró un pequeño incendio que fue sofocado por los bomberos, que habían llegado inmediatamente al lugar del siniestro. Afortunadamente, no hubo heridos.

Las condiciones del viento en el aeropuerto eran las que se muestran en este informe de la Agencia Estatal de Meteorología.


Tanto AENA como la compañía Delta Airlines trataron de aparentar normalidad tras el accidente. Según AENA el aeropuerto de Barajas operó desde el mediodía con una sola pista debido a este incidente, y aseguró que no hubo ningún retraso por este incidente, hasta que abrió de nuevo la pista 32L. Por otra parte, en la pista 36 izquierda, por la que despegó el avión, se había comprobado que no había restos de neumático ni ningún otro objeto que pudiera afectar a la seguridad de las aeronaves. Delta Airlines sólo confirmó el regreso de su vuelo 415, con itinerario Madrid-Nueva York, poco después de despegar debido a motivos de seguridad y aseguró que el avión aterrizó con normalidad y los pasajeros fueron desembarcados también con normalidad.


Esto es lo que pasó, pero AENA debería tomar nota de lo que podría haber sucedido y tomar las medidas necesarias; aunque todos sabemos que, como siempre, mirará hacia otro lado tratando de ocultar los riesgos del Aeropuerto de Madrid-Barajas al gran público.

domingo, 1 de diciembre de 2013

BARAJAS E IBERIA, EL CAMINO DE LA PERDICIÓN


La otrora compañía de bandera española, Iberia, y el que un presidente del gobierno y dos ministros de Fomento, empeñados ellos en sacar a España del rincón de la historia, habían designado como la futura puerta de Europa al resto del mundo, el Aeropuerto Internacional de Madrid-Barajas, caminan de la mano (hand in hand, como diría algún directivo de British Airways con la media sonrisa del que se sabe virtual vencedor del partido que empezó a jugarse en 1996 y que parece estar ya en el tiempo de descuento) hacia la perdición.

El pasado viernes 22 de noviembre un B737 de la compañía Ryanair declara “PAN, PAN”, es decir, emergencia, por un problema técnico en el estabilizador de cola. Avisados los servicios de emergencia del aeropuerto, éstos se movilizaron… y tanto que se movilizaron, que publicaron lo siguiente en la red social Twitter:


Afortunadamente la aeronave aterrizó sin novedad en el Aeropuerto de Madrid-Barajas y sin sufrir, ni ella ni los pasajeros o tripulación, daño alguno. Y entonces rectificaron.





En un primer momento nos temimos lo peor. Desde 2007 avisando de lo que puede ocurrir en Barajas, un accidente terrible y evitable en 2008, ninguna medida al respecto para corregir la insegura configuración operativa implantada, y no había servido para nada. Al final el desastre se hizo realidad. Un avión tras una aproximación frustrada a la pista 33L no había sido capaz de remontar el vuelo y se estrelló contra la Terminal 4. Afortunadamente todo quedó en un susto, aunque el que escribiera ese mensaje en Twitter debería hacer frente a su responsabilidad, lo mismo que los responsables de AENA, la AESA y la Dirección General de Aviación Civil, que permiten que en el Aeropuerto de Madrid-Barajas continúen implantadas las inseguras e ilegales Operaciones Segregadas y Simultáneas a pistas cruzadas.

Además, desde el punto de vista económico, las dos ampliaciones del Aeropuerto de Madrid-Barajas, diseñadas y ejecutadas por los ministros de Fomento Arias Salgado y Álvarez Cascos, y las inversiones satélite, entre las que se encuentra la ruinosa autopista de peaje a la T4, has sido un desastre, y son la principal causa de la situación de cuasi-quiebra económica de AENA.

¿Pagará alguno de ellos con la cárcel o con su patrimonio este desastre? ¿Les embargarán sus sueldos, uno en los consejos de administración de varias empresas privadas y el otro de diputado regional en Asturias amén de sus negocietes particulares?

Y toca hablar de Iberia, convertida ya en un enano regional y camino del definitivo desguace y aprovechamiento de restos por parte de British Airways, Vueling e Iberia Express, la heredera de la otrora insigne Iberia.

Por su notable interés, adjuntamos la intervención de la AADIBERIA (Asociación de Afectados por el Desmantelamiento de Iberia) en la última Junta General de Accionistas Extraordinaria de IAG 2013

Buenos días, mi nombre es Javier Sotos García e intervengo en la presente junta en representación de 121 accionistas, con un total de 478.125 acciones y en mi condición de secretario de la Junta Directiva de la Asociación de Afectados por el Desmantelamiento de Iberia, asociación que tiene como objetivo controlar y combatir las actuaciones de los gestores de IAG e IBERIA que puedan perjudicar los intereses de sus asociados, accionistas y trabajadores de Iberia, exigiendo para ello como norma fundamental el respeto a la legalidad y a los acuerdos previamente alcanzados, y que cuenta en la actualidad con mas de 2.000 asociados.

Someten ustedes a la aprobación de la Junta la adquisición de 98 aeronaves para British Airways y Vueling, dejando fuera de cualquier plan de adquisición, de forma absolutamente deliberada, a Iberia, habiendo procedido, incluso y a pesar de lo que el Presidente nos acaba de decir –porque no le he creído-, a congelar o anular los pedidos de aviones que para esta ya se encontraban cursados.

No contentos con eso han anunciado ustedes, además, que de aquí hasta el 2021, British Airways va a recibir 88 nuevos aviones, un número por si solo superior a toda la flota con la que actualmente cuenta Iberia.

Nada nuevo. Como ya venimos denunciando y tuve ocasión de exponer en la pasada Junta General Ordinaria, su actuación obedece a la intención, ahora claramente manifestada, de desmantelar Iberia aprovechando de esta, eso si, todo lo bueno que tenía y tiene en beneficio único de British Airways-IAG y sus gestores.
Ya les advertimos que su negligente actuación tendría consecuencias irreparables para Iberia y para el hub de Barajas. Desgraciadamente el tiempo nos ha dado la razón. Sólo en el mes de agosto Iberia cae mas de 16% en AKO. El tráfico en el aeropuerto de Barajas se ha reducido, solo en lo que va de año, en un 17% y, si nada lo remedia podría finalizar este año registrando unos 40 millones de pasajeros, un nivel igual al existente antes de la creación de la T4, todo ello mientras British Airways experimenta un crecimiento anual del 2,9 %. El turismo en agosto en la Comunidad de Madrid ha caído un 22%, lastrado sin duda por la drástica reducción de rutas, creando con ello una evidente alarma social.

A la vista de estos datos está claro que lo que ustedes han dado en llamar “fusión”, gracias a su disparatada y arbitraria gestión, le ha dado alas a British Airways, que ha recuperado pasajeros, rutas y flota, mientras Iberia ve como se desmantela ante la pasividad de gestores y responsables políticos quienes, a pesar de comprobar las consecuencias que para el sector turístico español tienen sus decisiones, miran para otro lado en clara dejación de funciones.

Los acuerdos propuestos vulneran flagrantemente, además, las salvaguardas de fusión en su día acordadas, sin que por parte de nadie de Iberia se exija su cumplimiento. Les recuerdo que, entre las referidas salvaguardas, se encontraba la obligación de una división razonable de nuevas oportunidades entre las dos redes, un desarrollo a largo plazo equilibrado de las mismas y el principio de que la evolución de uno de los centros no debe ir nunca en detrimento del otro, obligaciones que ustedes ahora se saltan a la torera.

En definitiva, el objetivo de que sometan ustedes a la aprobación de la Junta la adquisición de determinado número de aeronaves para British y Vueling, dejando de lado a Iberia, es claro. Obedece única y exclusivamente a la intención de beneficiar a British para compensar su lamentable situación a través de un continuo deterioro de Iberia, llevándose para aquella todo lo bueno, que es mucho, tal y como los 3.000 millones de euros que tenía en caja al momento de “fusionarse” y que, a día de hoy, han desaparecido, incumpliendo como he dicho las salvaguardas de fusión previamente acordadas.

Someten ustedes igualmente a la aprobación de la Junta el nombramiento, como Consejero Ejecutivo, de don Enrique Dupuy de Lome Chávarri. El Sr. Dupuy no es persona idónea para ocupar tal cargo. Recordemos que este señor ocupó el cargo de director financiero y de estrategia corporativa hasta el año 2010. Entre sus cometidos se encontraba la gestión de compra de combustible para Iberia. Desde el año 1996 a 2011 Iberia presentó, invariablemente, beneficios, a excepción del 2009, año en el que una negligente negociación del precio del combustible por parte del Sr. Dupuy condujo a Iberia a un serio revés en sus resultados.

En cualquier otra compañía y país del mundo el Sr. Dupuy no sólo estaría fuera de la empresa, sino que se habrían iniciado contra él los correspondientes procedimientos para exigirle responsabilidades por tan nefasta gestión. Ustedes no sólo no le exigen responsabilidades, sino que ahora le premian con un cargo que estará, mas que probablemente, tan excelente como inmerecidamente retribuido. Premian ustedes la ineptitud a la vez que desechan el potencial de cientos de trabajadores que si han demostrado, a lo largo de toda una vida, su valía y fidelidad a Iberia.

Está claro que es eso lo que pretenden. Tener gente que, a través de las decisiones como las que en su momento adoptó el Sr. Dupuy, coloquen a Iberia en una irreal situación que les sirva de coartada para acometer sus espurios planes, que no son otros que desmantelar por completo Iberia.
Se lo dije en la anterior Junta y se lo repito. No duden que nuestra asociación permanecerá vigilante acerca de las decisiones que ahora y en un futuro se puedan adoptar por este Consejo que supongan un menoscabo o perjuicio para Iberia, sus trabajadores y accionistas, y ejercitará las acciones que la razón y la Ley determinen en defensa de los derechos de nuestros asociados, esos que ustedes vienen continuamente vulnerando.


Y para finalizar la penúltima estocada a Iberia, el vencimiento en diciembre 2013 de las opciones sobre aviones de Iberia es mentira. Hoy es día uno de este mes.


Una mentira más que trataba de esconder lo que British Airways junto con los traidores españoles le están haciendo a Iberia.

Agradecemos a todos aquellos que nos han enviado la información para la elaboración de este artículo. Un artículo en el que hemos expuesto una serie de hechos y verdades, que se enfrentan con el paisaje idílico que nos describen los políticos gobernantes y los dirigentes de Iberia, porque la realidad es que Iberia y Barajas caminan juntos hacia la perdición

jueves, 21 de noviembre de 2013

ACCIDENTE EN EL AEROPUERTO DE KAZÁN (REPÚBLICA RUSA DE TATARSTÁN)






El pasado domingo 17 de noviembre a las 19:25 hora local el vuelo U9-363, un avión Boeing 737-53A, de la compañía Tatarstan Airlines, que partió del aeropuerto moscovita de Domodedovo (DME) a las 18:20, sufrió un accidente en el Aeropuerto de Kazán (República Rusa de Tatarstan) al desplomarse y estrellarse contra el suelo, tras intentar una frustrada en la maniobra de aproximación a la pista 11/29. Como resultado del impacto el avión quedó destrozado con un balance de 50 muertos, los 6 miembros de la tripulación y los 44 pasajeros que viajaban a bordo.


El tiempo a las 19:00 hora local era de viento de dirección 230º de 9 m/s con rachas de 12 m/s, una ligera precipitación de aguanieve y una temperatura de 3ºC. A las 19:30 las condiciones eran similares. La visibilidad era de 5000 metros.

Según relataron algunos testigos el avión se precipitó verticalmente sobre el suelo, y que tras el impacto se produjo una gran explosión. Entre las posibles causas se barajan cinco: fallo de pilotaje, avería mecánica, las condiciones meteorológicas, deficiente trabajo de la torre de control y la mala calidad del combustible del avión.

El portavoz de las aerolíneas Tatarstán, que disponían Del aparato siniestrado en régimen de alquiler, aseguró que el avión estaba en buenas condiciones técnicas, y que había sido revisado varias veces el día del accidente, en el que ya había realizado otros tres vuelos. Además aseguró que los dos pilotos, nacidos en 1966, acumulaban una gran experiencia profesional. El comandante Rustem Salíjov empezó a volar en esa misma nave en 2012 como segundo piloto. Llevaba 21 años volando. El segundo piloto, Víctor Gatsul, volaba desde hacía 23 años.

No está claro que se tratase de la primera maniobra de frustrada de la aproximación o del segundo intento. La cuestión es que, como se informa en Aviación Digital, la revelación de la conversación del piloto con la torre de control, en la que se revela el segundo intento de aproximación, por un medio ruso contraviene la normativa de OACI sobre la confidencialidad de las comunicaciones. Parece ser que el piloto de la aeronave, Rustem Salíjov, decidió abortar el primer intento de aterrizaje y dar una segunda vuelta, tras lo cual informó a la torre de control del aeropuerto de que el avión no estaba listo para tomar tierra. "Me informó de que se iba a una segunda vuelta. Me dijo que no tenía configuración para aterrizar. Le di las claves y las confirmó, como es reglamentario", explicó en declaraciones al canal de televisión "Rossiya" Kirill Kórnishin, controlador aéreo.

Reproducimos unos párrafos de la noticia:

Un hecho factual, aparentemente tan sencillo como es si se trataba del primer o segundo aterrizaje frustrado que intentaba la aeronave, hoy lunes, la agencia oficial de noticias rusa, RIA NOVOSTI, venía a cuestionarlo respecto a otros medios rusos, tras recoger la información de un controlador aéreo en la cadena Rusia24, donde éste indicaba que "antes de que la aeronave siniestrada iniciara una segunda vuelta para aterrizar, el piloto comunicó a la torre de control que el avión no estaba configurado o preparado. para tomar tierra". A continuación señalaba el ATC directa y textualmente que "me dijo que iba a hacer una segunda vuelta y le di tiempo de subida, todo conforme a la documentación (imaginamos que aquí se refiere al procedimiento). Entonces dijo que no tenía configuración apta para el aterrizaje", informaba el controlador Kririll Kornishin, añadiendo "todo sucedió pocos segundos después".

En esta ocasión hay dos elementos que llaman sobremanera la atención. En primer lugar que podía tratarse de la segunda maniobra, y no de la primera frustrada. Y en segundo lugar, muchísimo más grave, como un medio a escasas horas de producirse el accidente, empieza a revelar datos de las comunicaciones aeronáuticas directamente a los medios de comunicación, atreviéndose por así decirlo incluso a dar el nombre de un testigo como es el controlador, con nombres y apellidos. Esto directamente contraviene lo especificado por la normativa internacional de OACI, en su ANEXO 13 sobre Investigación de Accidentes Aéreos.

Por otra parte, y esto también en este caso resulta relevante, a las pocas horas, muy pocas, de haberse producido el accidente ya había una lista de fallecidos en el mismo publicada, y tanto la compañía aérea como las autoridades ya cuantificaban las primeras ayudas económicas para los familiares de los fallecidos. La rapidez de esta reacción, sí que se puede interpretar como efecto directo de el documento aprobado por OACI, recientemente en Montreal, el 285, donde las Asociaciones de Familiares de Víctimas de Accidentes Aéreos han desarrollado un trabajo mucho más que encomiable. La AVJK5022 entre ellas y destacadamente. Aunque para ellos llega tarde, en este caso ya podemos ver los frutos de su trascendental trabajo, y el apoyo a otras víctimas cuando la catástrofe se produce.


Aclarar que la frustrada se produce generalmente en la aproximación, y no tras el aterrizaje, situación que sólo tiene lugar en CAT III, en el que la frustrada si puede tomarse desde el suelo. Y recordar que un hecho como éste en el Aeropuerto de Madrid-Barajas podría tener consecuencias catastróficas, ya que el avión podría desplomarse, a elegir, sobre los edificios terminales 1, 2, o 3 si la aproximación es a la pista 18R, o sobre la T4 si ésta es a la pista 33L.

Para acceder a la información técnica disponible en la Aviation Safety Net pulsar aquí.

lunes, 11 de noviembre de 2013

AIRCRAFT NOISE AND CARDIOVASCULAR DISEASE NEAR HEATHROW AIRPORT IN LONDON: SMALL AREA STUDY


This article, published on the 8th of October in the British Medical Journal, shows the relation between aircraft noise and risk of stroke, coronary heart disease, and cardiovascular disease in the general population. The study considers twelve London boroughs and nine districts west of London exposed to aircraft noise related to Heathrow airport in London.

This article is complementary to the HYENA (Hypertension and Exposure to Noise near Airports) Study, aimed at assessing the relations between noise from aircraft or road traffic near airports and the risk of hypertension (published in this blog in 2009).


Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study

BMJ 2013; 347 doi: http://dx.doi.org/10.1136/bmj.f5432 (Published 8 October 2013)

Anna L Hansell, assistant director, honorary consultant; Marta Blangiardo, non-clinical lecturer in biostatistics; Lea Fortunato, research associate; Sarah Floud, PhD student; Kees de Hoogh, senior research officer; Daniela Fecht, research associate; Rebecca E Ghosh, research associate; Helga E Laszlo, acoustician; Clare Pearson, research assistant; Linda Beale, honorary research fellow; Sean Beevers, senior lecturer in air quality modeling; John Gulliver, lecturer in environmental science; Nicky Best, professor in statistics and epidemiology; Sylvia Richardson, visiting professor in biostatistics, director; Paul Elliott, director.

Correspondence to: P Elliott p.elliott@imperial.ac.uk

Accepted 16 August 2013

Abstract

Objective To investigate the association of aircraft noise with risk of stroke, coronary heart disease, and cardiovascular disease in the general population.

Design Small area study.

Setting 12 London boroughs and nine districts west of London exposed to aircraft noise related to Heathrow airport in London.

Population About 3.6 million residents living near Heathrow airport. Risks for hospital admissions were assessed in 12 110 census output areas (average population about 300 inhabitants) and risks for mortality in 2378 super output areas (about 1500 inhabitants).

Main outcome measures Risk of hospital admissions for, and mortality from, stroke, coronary heart disease, and cardiovascular disease, 2001-05.

Results Hospital admissions showed statistically significant linear trends (P<0.001 to P<0.05) of increasing risk with higher levels of both daytime (average A weighted equivalent noise 7 am to 11 pm, LAeq,16h) and night time (11 pm to 7 am, Lnight) aircraft noise. When areas experiencing the highest levels of daytime aircraft noise were compared with those experiencing the lowest levels (>63 dB v ≤51 dB), the relative risk of hospital admissions for stroke was 1.24 (95% confidence interval 1.08 to 1.43), for coronary heart disease was 1.21 (1.12 to 1.31), and for cardiovascular disease was 1.14 (1.08 to 1.20) adjusted for age, sex, ethnicity, deprivation, and a smoking proxy (lung cancer mortality) using a Poisson regression model including a random effect term to account for residual heterogeneity. Corresponding relative risks for mortality were of similar magnitude, although with wider confidence limits. Admissions for coronary heart disease and cardiovascular disease were particularly affected by adjustment for South Asian ethnicity, which needs to be considered in interpretation. All results were robust to adjustment for particulate matter (PM10) air pollution, and road traffic noise, possible for London boroughs (population about 2.6 million). We could not distinguish between the effects of daytime or night time noise as these measures were highly correlated.

Conclusion High levels of aircraft noise were associated with increased risks of stroke, coronary heart disease, and cardiovascular disease for both hospital admissions and mortality in areas near Heathrow airport in London. As well as the possibility of causal associations, alternative explanations such as residual confounding and potential for ecological bias should be considered.

Introduction

Although the literature on population annoyance associated with aircraft noise is extensive,1 2 little research has been conducted on the potential effects of aircraft noise on cardiovascular health.2 Most studies of the health effects associated with aircraft noise have focused on blood pressure and the risk of hypertension.3 4 5 6 7 8 The few reports of aircraft noise and risk of stroke, coronary heart disease, or cardiovascular disease are inconsistent,9 10 11 12 partly reflecting reduced statistical power because of the small proportion of the population exposed to high aircraft noise levels.10 11

Noise levels show a graded, direct relation with prevalence of annoyance. This is greater for aircraft noise than for other environmental noise sources—that is, road traffic or rail1; community annoyance due specifically to aircraft noise seems to have increased in the past 30 years.13 Noise is associated with activation of the sympathetic nervous system.14 In animal models, chronic exposure to noise leads to increases in blood pressure,15 16 and in humans noradrenaline (norepinephrine) levels,17 whereas acute exposure to non-habitual loud noise increases adrenaline (epinephrine) levels.17 Experimental studies of humans acutely exposed to noise at very high level also show increases in blood pressure18 and heart rate.19

Heathrow airport, situated in a densely populated area in west London, is one of the busiest airports in the world. Reports have shown an association between aircraft noise, especially at night, and hypertension,3 acute increases in blood pressure,7 and self reported cardiovascular disease12 in the population living near airports, including Heathrow. We investigated the risks of stroke, coronary heart disease, and cardiovascular disease hospital admissions and mortality in areas exposed to aircraft noise near Heathrow airport.

Methods

We carried out analyses comparing rates of hospital admissions for cardiovascular disease and mortality in neighbourhoods (small areas) exposed to different levels of aircraft noise related to Heathrow airport. We used a standard noise metric, the A weighted equivalent (Aeq) sound pressure level (L), denoted as LAeq. The human ear is more sensitive to some frequencies than others. The LAeq devalues lower frequencies compared with medium and higher frequencies,20 and uses a set of mathematical curves to adjust the sound pressure level to the relative loudness perceived by human hearing. We defined daytime noise (LAeq,16h) as the average A weighted equivalent noise from 7 am to 11 pm and night time noise (Lnight) from 11 pm to 7 am.

Study area and population

The study area comprised 12 London boroughs and nine districts west of London exposed to aircraft noise related to Heathrow airport, defined as being partly or wholly within the 2001 50 dB noise contour for Heathrow aircraft during the daytime (LAeq,16h) supplied by the Civil Aviation Authority (fig 1⇓). Additionally, we had confounder data for particulate air pollution and road traffic noise for the 12 London boroughs (data for districts outside London were not readily comparable with the data available for London).


Fig 1 Contextual maps of study area and Heathrow airport showing (top) London boroughs and districts outside London overlaid with the 2001 annual average aircraft daytime (7 am-11 pm, LAeq,16h) noise contours; (bottom) annual average night time noise contours (11 pm-7 am, Lnight )

We defined neighbourhoods (small areas) by using the national census geographical units, which are census output areas and super output areas. The study area comprised 12 110 census output areas (average 297 inhabitants, area 0.13 km2) and 2378 super output areas (1510 inhabitants, area 0.65 km2). We used the census output area as the unit of analysis for hospital admissions and the super output area, an aggregate of on average five census output areas, for mortality as the numbers of deaths were insufficient for meaningful analyses at census output area level. We used Office for National Statistics annual mid-year population estimates by age and sex for 2001-05 at London borough or district level, which we then disaggregated to census output areas and super output areas using the UK 2001 census age-sex distribution.

Aircraft noise data

From the Civil Aviation Authority we obtained aircraft noise data related to Heathrow airport for 2001 on 10 m × 10 m grids. The noise data had been modelled using the UK Civil Aircraft Noise Contour Model ANCON, which uses information on flight paths of arriving and departing aircraft along with factors such as height, speed, and engine power to derive noise at ground level.21

We calculated population weighted annual average noise levels for daytime and night time aircraft noise for census output areas and super output areas. This was done because the noise grid was smaller than the area of the census output area or super output areas and populations are not evenly distributed (for example, a census output area has on average 125 addresses and six postcodes that may cluster to one or other side of the census output area) so a simple area averaging would not accurately represent population exposures (see supplementary appendix).

Health data

We extracted post coded data on hospital admissions (main reason for admission, first episode of stay in a given year) and deaths (by underlying cause) for the study area, 2001-05, from Office for National Statistics and Department of Health data held by the UK Small Area Health Statistics Unit at Imperial College London. Data were obtained for stroke (ICD-10 codes I61, I63-I64, international classification of diseases, 10th revision), coronary heart disease (ICD-10 I20-I25), and cardiovascular disease (ICD-10 Chapter I) and then linked these by postcode (average 23 households) to census output area and super output area.

Data on potential confounders

We included ethnicity, deprivation, and a smoking proxy at census output area and super output area level as potential confounders. Area level ethnic composition and deprivation from the 2001 census were obtained from the Office for National Statistics. For the two major ethnic groups in London, we categorised areas by South Asian ethnicity (census term “Asian or Asian British,” for which we included only “Indian,” “Pakistani,” and “Bangladeshi”) and black ethnicity (census term “Black or Black British,” which includes “Black Caribbean,” “Black African,” and “Other Black”). We used the following cut points: the national average (%) for England and Wales at census output area level (4% for South Asian, 2% for black ethnicity), double the national average (8%, 4%), and 50% South Asian or black ethnicity—areas where these comprised the majority ethnic group. This gave us four categories for each ethnicity, where the reference categories were less than or equal to the national average (%) for that ethnic group (≤4% for South Asian and ≤2% for black ethnicity). The deprivation score used was Carstairs index,22 categorised in fifths. As a proxy measure for area level smoking we used smoothed lung cancer mortality (ICD-10 codes C33-C34) relative risk estimates, 2005, for census output areas and super output areas,23 since data on individual smoking or smoking prevalence were not available.

For the 12 London boroughs within the study area we also obtained data on air pollution and daytime road noise. For air pollution, the Environmental Research Group at King’s College London provided estimates of annual mean particulate matter of 10 microns or less (PM10) at spatial resolution of 20 m × 20 m for 2001, using dispersion modeling as detailed in the London Emissions Toolkit and London Air Pollution Toolkit.24 We obtained data on daily average road traffic noise for 2001 from the Department for Environment, Food and Rural Affairs (Defra), expressed in continuous A weighted equivalent sound pressure levels (LAeq,16h,road) on 10 m × 10 m grids at 1 dB resolution between ≥50 dB and ≤75 dB. Road traffic noise data (major roads) had been generated to comply with the European Noise Directive 2002/49/EC (http://ec.europa.eu/environment/noise/directive.htm) and modeled using the calculation of road traffic noise method at a height of 4 m above ground using characteristics of the road network.25 We linked the air pollution and road noise data to census output area and super output area using population weighting (see supplementary appendix).

Statistical analyses

Correlations between aircraft noise and potential confounders were assessed using Goodman Kruskal tau rank correlation coefficients.

For the entire study area we carried out a small area analysis of aircraft noise and the three cardiovascular outcomes, adjusted for potential confounders at area level (census output area or super output area): age, sex, South Asian and black ethnicity, deprivation, and smoking proxy (lung cancer mortality risk). We conducted a sensitivity analysis for the 12 London boroughs (London area) additionally including particulate air pollution (PM10) and road noise as potential confounders.

We grouped daytime aircraft noise and road noise into six categories from ≤51 to >63 dB in increments of 3 dB, which represents a doubling in sound intensity that is just perceptible as a change in loudness to the human ear. For aircraft noise, 57 dB LAeq is taken as the point at which noticeable community annoyance starts to occur26 27; the Civil Aviation Authority attempts to minimise areas exposed to this level of noise or higher, measured as the daytime LAeq,16h over a 92 daytime summer period.27 Our LAeq,16h aircraft noise categories include a 57 dB cut point, although we use an annual not summertime average (fig 1). Night time aircraft noise affected fewer areas (fig 1), and 5 dB categories (≤50, >50-55, and >55 dB) were used.

To aid comparisons between daytime and night time aircraft noise, we also ran daytime analyses using the same 5 dB categories. The correlation between daytime and night time aircraft noise categories was almost perfect (τ ≥0.98, see supplementary table 2) so we did not include these together in the statistical models, but analysed them separately.

To allow for small numbers and unstable rates of hospital admissions and mortality we used random effects models to produce smoothed relative risk maps. To examine the effects of noise we fitted Poisson regression models with an additional random effect term to account for over-dispersion and residual heterogeneity, using the R software (www.r-project.org/) and tested for linear trend across noise categories using the median noise value for each category.

Results

Figure 1 shows the study area; the population (2001 census) was 3.6 million. During 2001-05, 189 226 first episodes of hospital stay in a given year for cardiovascular disease (16 983 stroke, 64 448 coronary heart disease) and 48 347 cardiovascular disease related deaths (9803 stroke, 22 613 coronary heart disease) occurred in the study area (table⇓). Supplementary figures 1 and 2 show the maps of hospital admissions at census output area level and mortality at super output area level, respectively. Only 2% or fewer of the study population lived in areas exposed to the highest category of daytime (>63 dB) or night time (>55 dB) aircraft noise (see supplementary table 1).

The area affected by night time noise was less extensive than that for daytime noise (fig 1). Supplementary figure 3 shows the spatial distributions of the confounder data. Areas with a high proportion of South Asian and black ethnicity population were concentrated in the north eastern and eastern part of the study area, respectively, which were also areas with higher deprivation and higher risks of lung cancer. Within the London area, higher levels of PM10 were found in the eastern part towards central London; distributions of both PM10 and road noise differed from that of aircraft noise (supplementary figure 3 and figure 1). Correlations between aircraft noise and potential confounders are shown in supplementary table 2 where τ=1 denotes perfect positive correlation and τ=−1 denotes perfect negative correlation. Correlations between confounders and aircraft noise were all ≤|0.30|. In the London boroughs, aircraft noise was modestly correlated with PM10 (τ=−0.2 for daytime noise and τ=-0.3 for night time noise) but not with road traffic noise (τ ≤0.02).

Hospital admissions

Figure 2⇓ and supplementary table 3 show the results for hospital admission for daytime and night time noise adjusted for age and sex, and with additional adjustment for ethnicity, deprivation, and the smoking proxy. For each of stroke, coronary heart disease, and cardiovascular disease the pattern was of increasing risk of admission with increasing aircraft noise, and all linear tests for trend were statistically significant (P<0.001 to P<0.05). The risk of coronary heart disease in particular, and to a lesser extent cardiovascular disease, was noticeably reduced by adjustment for multiple confounders, in particular South Asian ethnicity.

Fig 2 Relative risks (95% confidence intervals) for associations between hospital admissions for stroke, coronary heart disease, and cardiovascular disease in 2001-05 and annual population weighted average daytime aircraft noise (relative to ≤51 dB) and night time aircraft noise (relative to ≤50 dB) in 2001, census output areas

In multiple adjustment models, for daytime aircraft noise (>63 dB v ≤51 dB) the relative risk for stroke was 1.24 (1.08 to 1.43), for coronary heart disease was 1.21 (1.12 to 1.31), and for cardiovascular disease was 1.14 (1.08 to 1.20). Corresponding relative risks for night time noise (>55 dB v ≤50 dB) were 1.29 (1.14 to 1.46), 1.12 (1.04 to 1.20), and 1.09 (1.04 to 1.14). Results using the same categories for daytime as for night time noise (supplementary table 3) suggested higher relative risks for night time noise.

Mortality

Figure 3⇓ and supplementary table 4 show the results for mortality for daytime and night time noise. The relative risks of mortality were numerically similar to those for hospital admissions at the higher noise levels, although confidence intervals were wider, reflecting the smaller numbers of events. In multiple adjusted models, for daytime aircraft noise (>63 dB v ≤51 dB) the relative risk for stroke mortality was 1.21 (95% confidence interval 0.98 to 1.49), for coronary heart disease was 1.15 (1.02 to 1.30), and for cardiovascular disease was 1.16 (1.04 to 1.29). The corresponding relative risks for night time aircraft noise (>55 dB v ≤50 dB) were 1.23 (1.02 to 1.49), 1.11 (0.99 to 1.24), and 1.14 (1.03 to 1.26). Results using the same categories for daytime as for night time noise (supplementary table 4) suggested higher relative risks for night time noise. Tests for linear trend across noise categories in the fully adjusted models were significant (P<0.05) for daytime noise and coronary heart disease but not for stroke or cardiovascular disease, nor night time noise.

Fig 3 Relative risks (95% confidence intervals) for associations between mortality from stroke, coronary heart disease, and cardiovascular disease in 2001-05 and annual population weighted average daytime aircraft noise (relative to ≤51 dB) and night time aircraft noise (relative to ≤50 dB) in 2001, super output areas

Sensitivity analyses

Results were materially unchanged with additional confounder adjustment for particulate air pollution and road traffic noise in the 12 London boroughs (data not shown).

Discussion

In this small area study covering a population of 3.6 million people living near Heathrow airport in London, we identified significant excess risks of stroke, coronary heart disease, and cardiovascular disease, especially among the 2% of the population affected by the highest levels of daytime and night time aircraft noise.

Strengths and weaknesses of this study

Strengths of this study include the large general population sample, inclusion of both incident events (hospital admissions) and mortality, and wide range of aircraft noise levels, providing sufficient statistical power to detect modest associations. Common to some other epidemiological studies,11 12 we analysed aircraft noise separately from other transport noise as it is currently unclear whether noise may be additive or whether aspects of noise such as sound frequency and number and duration of noisy events may be important. Limitations include inability to adjust for confounders at individual level. We were able to adjust at small area level for ethnicity, deprivation, and a smoking proxy (and additionally for particulate air pollution and road traffic noise for a subset of 2.6 million people), but we did not have access to individual level information on confounders such as smoking; therefore results at the area level may not be applicable to individuals (ecological fallacy). Admissions for coronary heart disease and to a lesser extent for cardiovascular disease were particularly affected by adjustment for South Asian ethnicity, which itself is strongly associated with risk of coronary heart disease28; hence these risk estimates should be interpreted cautiously. We restricted our hospital admission analyses to the first admission within one calendar year; as we did not link across years it is possible that some may be readmissions if they occurred in different calendar years. However, point estimates at higher noise levels were similar for mortality and hospital admissions, making it less likely that this was an important source of bias.

We examined exposures to aircraft noise in 2001 and health outcomes in 2001-05. We were unable to distinguish between short and longer term effects of noise in the present study and this needs to be examined in further research. Some studies9 12 have suggested larger effect estimates with longer duration of residence, but this may reflect exposure misclassification among more recent residents. Our data on noise exposure are left censored because of concerns about the accuracy of noise models at low levels. It is difficult to determine the resulting misclassification bias; this may also have affected the size of our risk estimates by restricting the range of noise levels across which effect sizes were estimated. A further potential source of bias is that we did not have information on migration in and out of the study areas.

Possible explanations and implications in the context of previous studies

Potential for causality of the observed associations needs to be considered in the context of previous studies, including consideration of biological plausibility and coherence. Much of the research effort concerning adverse effects of noise on cardiovascular health has focused on effects on blood pressure and risk of hypertension, hypertension being the leading cause of stroke and a major risk factor for heart disease.29 Acute exposure to noise activates the neuroendocrine system, leading to short term increases in heart rate or blood pressure, or both18 19 30 and in stress hormone levels31; neuroendocrine effects are also seen with chronic exposures17 offering potential mechanisms by which environmental noise may be related to cardiovascular risk. Although these effects have mainly been studied at high exposure levels in the occupational30 32 or experimental setting,31 they may also occur at ambient environmental noise levels.31 In a study conducted near four European airports (including Heathrow), noise disturbance by aircraft noise at night was associated with short term increases in blood pressure of 6-7 mm Hg.7

Increased risks of stroke and coronary heart disease would be expected if such physiological changes were to lead to sustained raised blood pressure.29 A meta-analysis published in 20098 of five studies (totalling nearly 45 000 participants) of aircraft noise and risk of long term hypertension gave a pooled relative risk estimate of 1.13 (95% confidence interval 1.00 to 1.28) per 10 dB increase. A subsequent study of approximately 5000 adults in Sweden found long term effects on hypertension risk only in subgroup analyses, but half the study population had a family history of diabetes, which may affect generalisabilty.5

The previous literature concerning aircraft noise and cardiovascular disease and mortality is sparse and not fully consistent. In a cross sectional study of people living near seven European airports (including Heathrow), a significant association was observed between night time average aircraft noise and self reported heart disease and stroke (odds ratio 1.25, 95% confidence interval 1.03 to 1.51) in those who had been living in the same place for 20 or more years.12 A census based study of 4.6 million adults aged more than 30 years in Switzerland reported an association with mortality from myocardial infarction in those exposed to the highest level of aircraft noise and who had lived at least 15 years in their place of residence; no associations were seen with stroke or cardiovascular mortality.9 A study of adults aged 45-85 years living in Vancouver, Canada10 did not find associations of aircraft noise with coronary heart disease mortality, neither did a population based study of about 57 000 adults aged 50-64 years in Denmark with stroke mortality.11 These previous studies had lower population exposures to aircraft noise than in London.

As with our findings for aircraft noise, significant associations have been reported for road traffic noise and heart disease10 33 34 35 and stroke.11 A meta-analysis of 24 population studies of road traffic noise found a dose-response association with hypertension,36 with a combined odds ratio of 1.03 (95% confidence interval 1.01 to 1.06) per 5 dB increase of road traffic noise, in the range 45-75 dB.
We were unable to distinguish between night time and daytime noise as they were highly correlated and so their effects could not be differentiated. More research is needed to determine if night time noise that disrupts sleep may be a mechanism underlying observed associations.2

Conclusions

How best to meet commercial aircraft capacity for London and other major cities is a matter of active debate, as this may provide major economic benefits. However, policy decisions need to take account of potential health related concerns, including possible effects of environmental noise on cardiovascular health. Our results suggest that high levels of aircraft noise are associated with an increased risk of stroke, coronary heart disease, and cardiovascular disease. As well as the possibility of causal associations, alternative explanations should be considered. These include the potential for incompletely controlled confounding and ecological bias, as we did not have access to individual level confounder data such as ethnicity and smoking. Further work to understand better the possible health effects of aircraft noise is needed, including studies clarifying the relative importance of night time compared with daytime noise, as this may affect policy response.

What is already known on this topic

• Few studies have examined aircraft noise and risk of incident or fatal cardiovascular disease or stroke
• Previous studies have found an increased risk of hypertension associated with aircraft noise and increased risk of hypertension, stroke, and coronary heart disease with road traffic noise
• These findings are consistent with those from studies of occupational noise exposure, and experimental studies examining short term effects of noise on the cardiovascular system

What this study adds

• Areas with high levels of aircraft noise related to Heathrow airport in London had increased risks of stroke, coronary heart disease, and cardiovascular disease
• Interpretation should consider not only causal associations but also possible alternative explanations such as residual confounding and ecological bias

Notes

Cite this as: BMJ 2013;347:f5432

Footnotes

• We dedicate this paper to Lars Jarup who helped initiate this project and passed away in 2010. We thank Peter Hambly, Margaret Douglass, Eric Johnson, Kayoung Lee, and David Morley for technical support and the advisory group members: Tim Williams, Yvette Bosworth (Defra), Stephen Turner (Bureau Veritas/Defra), and Nigel Jones (Extrium) who provided traffic noise data, and Darren Rhodes and Kay Jones (Civil Aviation Authority) who provided aircraft noise data.

• Contributors: PE and ALH with MB, LF, SF, KdH, DF, LB, and SR conceived and designed the study. MB, LF, SF, KdH, DF, REG, LB, JG, and SB were involved in data extraction and preparation. JG, KdH, and DF were responsible for the Geographical Information System analyses. JG, KdH, and HEL interpreted the aircraft noise data. LF and MB with REG and CP carried out the statistical analyses, supervised by PE, ALH, SR, and NB. The analyses were interpreted by PE, ALH, MB, LF, NB, SR, HEL, and JG. ALH and PE drafted the initial report; all coauthors revised the report and approved the final version. MB and LF contributed equally to this paper and are joint second authors. PE is the guarantor of this paper.

• Funding: The work of the UK Small Area Health Statistics Unit is funded by Public Health England as part of the MRC-PHE Centre for Environment and Health, funded also by the UK Medical Research Council. Support was received from the European Network for Noise and Health (ENNAH), EU FP7 grant No 226442. PE acknowledges support from the National Institute for Health Research (NIHR) Biomedical Research Centre at Imperial College Healthcare NHS Trust and Imperial College London. PE is an NIHR senior investigator. The funders had no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the article; and in the decision to submit the article for publication. The advisory group provided advice on methodology but was not involved in the analyses, interpretation of results, or writing of the paper. The views expressed are those of the authors and not necessarily those of the NHS, NIHR, or Department of Health.

• Competing interests: All authors have completed the ICMJE uniform disclosure at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: financial support for the submitted work through the funding of the UK Small Area Health Statistics Unit by Public Health England as part of the MRC-PHE Centre for Environment and Health, funded also by the UK Medical Research Council; financial support from the European Network for Noise and Health (ENNAH), EU FP7 grant No 226442; PE acknowledges support from the National Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial College London; PE is an NIHR Senior Investigator; ALH and HEL declare consultancy fees from AECOM as part of a Defra report on health effects of environmental noise; ALH declares a Greenpeace membership but has not received any money from the organisation nor been involved in campaigns; nor other relationships or activities that could appear to have influenced the submitted work.

• Ethical approval: The study was commissioned by the Department of Health in England; ethical approval was obtained from the National Research Ethics Service reference 12/LO/0566 and the Imperial College Research Ethics Committee.

• Data sharing: Data are available from the data providers on application with appropriate ethics and governance permissions, but we do not hold data provider, ethics, or governance permissions to share the dataset with third parties.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/.

References

1. Miedema HME, Vos H. Exposure-response relationships for transportation noise. J Acoust Soc Am1998;104: 3432-45.
2. World Health Organization. Burden of disease from environmental noise. WHO, Regional Office for Europe. JRC, European Commission; 2011.
3. Jarup L, Babisch W, Houthuijs D, Pershagen G, Katsouyanni K, Cadum E, et al. Hypertension and Exposure to Noise Near Airports: the HYENA Study. Environ Health Perspect2008;116::329-33.
4. Eriksson C, Rosenlund M, Pershagen G, Hilding A, Ostenson CG, Bluhm G. Aircraft noise and incidence of hypertension. Epidemiology2007;18:716-21.
5. Eriksson C, Bluhm G, Hilding A, Östenson C-G, Pershagen G. Aircraft noise and incidence of hypertension—gender specific effects. Environment Res2010;110:764-72.
6. Rosenlund M, Berglind N, Pershagen G, Jarup L, Bluhm G. Increased prevalence of hypertension in a population exposed to aircraft noise. Occup Environ Med2001;58:769-73.
7. Haralabidis AS, Dimakopoulou K, Vigna-Taglianti F, Giampaolo M, Borgini A, Dudley ML, et al. Acute effects of night-time noise exposure on blood pressure in populations living near airports. Eur Heart J2008;29:658-64.
8. Babisch W, van Kamp I. Exposure-response relationship of the association between aircraft noise and the risk of hypertension. Noise Health2009;11:161-8.
9. Huss A, Spoerri A, Egger M, Röösli M, Swiss National Cohort Study Group. Aircraft noise, air pollution, and mortality from myocardial infarction. Epidemiology2010;21:829-36.
10. Gan WQ, Davies HW, Koehoorn M, Brauer M. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality. Am J Epidemiol2012;175:898-906.
11. Sørensen M, Hvidberg M, Andersen ZJ, Nordsborg RB, Lillelund KG, Jakobsen J, et al. Road traffic noise and stroke: a prospective cohort study. Eur Heart J2011;32:737-44.
12. Floud S, Blangiardo M, Clark C, de Hoogh K, Babisch W, Houthuijs D, et al. Exposure to aircraft and road traffic noise and associations with heart disease and stroke in six European countries: a cross-sectional study. Environ Health2013 (in press).
13. Babisch W, Houthuijs D, Pershagen G, Cadum E, Katsouyanni K, Velonakis M, et al. Annoyance due to aircraft noise has increased over the years: results of the HYENA study. Environ Int2009;35:1169-76.
14. Babisch W. The noise/stress concept, risk assessment and research needs. Noise Health2002;4:1-11.
15. Medoff HS, Bongiovanni AM. Blood pressure in rats subjected to audiogenic stimulation. Am J Physiol1945;143:300-5.
16. Yeakel EH, Shenkin HA, McCann SM. Blood pressures of rats subjected to auditory stimulation. Am J Physiol1948;155:118-27.
17. Ising H, Braun C. Acute and chronic endocrine effects of noise: review of the research conducted at the Institute for Water, Soil and Air Hygiene. Noise Health2000;2:7.
18. Andrén L, Hansson L, Björkman M, Jonsson A. Noise as a contributory factor in the development of elevated arterial pressure. Acta Med Scand1980;207:493-8.
19. Holand S, Girard A, Laude D, Meyer-Bisch C, Elghozi JL. Effects of an auditory startle stimulus on blood pressure and heart rate in humans. J Hypertens1999;17:1893-7.
20. Berglund B, Lindvall T, Schwela DH. Guidelines for community noise. WHO 1999.
21. Ollerhead JB, Rhodes DP, Viinikainen MS, Monkman DJ, Woodley AC. The UK Civil Aircraft Noise Contour Model ANCON: improvements in version 2 (R&D Report 9842). Civil Aviation Authority; 1999.
22. Carstairs V, Morris R. Deprivation and health in Scotland. Aberdeen University Press; 1991.
23. Best N, Hansell A. Geographic variations in risk: adjusting for unmeasured confounders through joint modeling of multiple diseases. Epidemiology2009;20:400-10.
24. Kelly F, Anderson HR, Atkinson R, Barratt B, Beevers S, Derwent D, et al. The impact of the congestion charging scheme on air quality in London. Part 1.Emissions modeling and analysis of air pollution measurements. Res Rep Health Eff Inst2011;155:5-71.
25. Department of Transport and the Welsh Office. Calculation of road traffic noise. HMSO; 1988.
26. Critchley JB, Ollerhead JB. The use of Leq as an aircraft noise index. Civil Aviation Authority, Directorate of Operational Research and Analysis 1990.
27. Lee J, Edmonds L, Patel J, Rhodes D. Noise exposure contours for Heathrow Airport 2011. ERCD report 1201; 2012.
28. Balarajan R. Ethnic differences in mortality from ischaemic heart disease and cerebrovascular disease in England and Wales. BMJ1991;302:560.
29. Elliott P, Stamler J. Primary prevention of high blood pressure. In: Elliott P, Marmot M, eds. Coronary heart disease epidemiology. From aetiology to public health. Oxford University Press; 2005;751-68.
30. Lusk SL, Gillespie B, Hagerty BM, Ziemba RA. Acute effects of noise on blood pressure and heart rate. Arch Environ Health2004;59:392-9.
31. Babisch W. Stress hormones in the research on cardiovascular effects of noise. Noise Health2003;5:1-11.
32. Tomei G, Fioravanti M, Cerratti D, Sancini A, Tomao E, Rosati MV, et al. Occupational exposure to noise and the cardiovascular system: a meta-analysis. Sci Total Environ2010;408:681-9.
33. Sørensen M, Andersen ZJ, Nordsborg RB, Jensen SS, Lillelund KG, Beelen R, et al. Road traffic noise and incident myocardial infarction: a prospective cohort study. PLoS One2012;7:e39283.
34. Babisch W, Beule B, Schust M, Kersten N, Ising H. Traffic noise and risk of myocardial infarction. Epidemiology2005;16:33-40.
35. Selander J, Nilsson ME, Bluhm G, Rosenlund M, Lindqvist M, Nise G, et al. Long-term exposure to road traffic noise and myocardial infarction. Epidemiology2009;20:272-9.
36. Van Kempen E, Babisch W. The quantitative relationship between road traffic noise and hypertension: a meta-analysis. J Hypertens2012;30:1075-86.

domingo, 3 de noviembre de 2013

SUCEDIÓ EN BARAJAS EL 4 DE AGOSTO DE 2011


Adjuntamos artículo de SKYbrary sobre un incidente que sufrió un avión en su aproximación al Aeropuerto de Madrid-Barajas.

E145, en route, north east of Madrid Spain, 2011 (CFIT LB HF AGC)


Source: www.skybrary.aero

Categories: Accidents and Incidents

Description

On 4 August 2011, an Embraer ERJ 145 being operated by Luxair on a scheduled passenger flight from Luxembourg to Madrid in day VMC when its crew read back a clearance to descend to 10,000 feet as one to descend to 5000 feet, an altitude below both the STAR minimum altitude and the MRVA. The controller did not notice the read back error and when the aircraft was then transferred to the next sector, the controller there also did not notice the error when the crew advised their clearance on first call. An EGPWS ‘PULL UP’ Hard Warning was subsequently activated and recovery followed. There were no injuries to the 47 occupants during this manoeuvre.

Investigation

An Investigation was carried out by the Spanish Investigation Agency CIAIAC. It was noted that the First Officer had been acting as PF at the time of the Incident and that both pilots were experienced on the aircraft type and familiar with Madrid.

It was found that when the aircraft was cleared to descend to 10,000 feet by the controller in the ACC East Director position using the phraseology “descend to ten thousand feet”, spoken clearly and enunciated properly, the aircraft crew had wrongly read back a clearance to descend to 5000 feet which was not noticed by the controller concerned and was also below the altitude for the STAR being flown (10,000 feet), the MSA on the STAR chart (9500 feet) and the applicable MRVA. Prior to the aircraft reaching 10,000 feet, there was then a change of controller in position with the relevant strip showing a clearance to 10,000 ft. The aircraft was then transferred to the Initial Approach Director on the assumption that it was descending in accordance with the clearance issued. The receiving controller, despite advising the aircraft of “radar contact”, failed to notice the wrong cleared altitude when 5000 feet was given as well as not noticing that the aircraft was below the MRVA. He advised the Investigation that “the aircraft was transferred to him while supposedly descending through 10,000 ft and that there must have been a miscommunication since he asked the (East Sector) controller if he had cleared the aircraft to descend, to which he replied no”. The Investigation noted that “the information obtained from the (East Director) executive controllers and the planning controllers did not yield anything of relevance to the investigation of the event”.

Recorded data showed that when the aircraft was transferred to the Initial Approach controller, it was already below 8000 feet and the advice to the crew of “radar contact” was given with the aircraft descending through an altitude of 7349 feet. The aircraft EGPWS was triggered a little over half a minute later with a Terrain Alert followed about 20 seconds later by a Hard Warning “Terrain Pull Up” to which the crew responded by disconnecting the AP, increased thrust and climbing. The minimum altitude reached by the aircraft was found to have been 6290 ft. The Warning and the response to it was not reported to ATC until responding shortly afterwards to a second transmission to turn right for traffic separation when after acknowledging the instructed radar heading, the crew added “and we’ll maintain seven thousand feet due to mountain”. Subsequently, ATC instructed the aircraft to climb to 10,000 feet.

The actual altitude of the aircraft in relation to altitude clearance restrictions and key points during the event are shown in the diagram below. It can be seen that the aircraft was below the minimum altitude for the STAR for four minutes and below the MRVA for three minutes. The Investigation does not comment on the terrain clearance actually achieved during the event.


Flight profile of the aircraft during the incident (Reproduced from the Final Report)

The Investigation did note that:

• Each of the controller positions involved was manned by an “executive controller” and a “planning controller” but that “the functions of the planning controller are not documented by the service provider (AENA), meaning the exact tasks involved in the planning controller’s job are unknown.

• The radar control system installed at the ACC involved was capable of generating MSAW alerts but that according to AENA “this function is not enabled at any of Spain’s control centres because the relevant operational validation to determine which operating parameters are needed for said alert has not been performed yet”.

The formal statement of Cause made by the Investigation reads:

“The incident occurred because the aircraft descended below the minimum standard terminal arrival route, minimum radar vectoring and minimum sector altitudes. The crew, which was obligated to maintain separation with terrain and know that the minimum altitude specified by the arrival procedure was 10,000 ft, descended below said altitude without confirming with ATC whether the clearance given was correct.

The (ACC) sector controller used improper phraseology and cleared the aircraft to descend to 10,000 ft. The crew acknowledged descending to 5,000 ft and the controller did not correct the faulty readback”.

It was also noted that contributing to the incident was “the fact that (the controllers involved) noticed that the aircraft had descended below the minimum altitude in the procedure and below the minimum radar vectoring altitude. The (Initial Approach) controller only realised this fact after being informed by the crew when the aircraft’s EGPWS alerted them and they started to climb.”

Three Safety Recommendations were made as a result of the Investigation as follows:

• that AENA evaluate the incorporation of topics involving the use of standard phraseology and the recommendations issued by EUROCONTROL, as well as information concerning faulty acknowledgments and its consequences, into the continuing training programs for control personnel so as to raise controller awareness regarding the importance of these aspects. [REC 01/13]

• that AENA establish the measures needed to implement the altitude alert function in (the radar control system), at least in those posts where aircraft separation with terrain could be critical (as is the case of Madrid-Barajas when in a south configuration). [REC 02/13]

• that AENA issue a document where the operation procedure be described and the tasks of the planner controllers be defined. [REC 03/13]

It was noted that as Luxair had decided during the Investigation to "revise its procedures, to improve its training and to present this incident internally to its crews as a case study to remind them of the importance of increasing their awareness of altitude restrictions and limitations” a Safety Recommendation to the Operator was not necessary. The Final Report (in Spanish) was approved for publication on 30 January 2013 and subsequently made available in English translation: Final Report (in English).

Related articles and further readings were not included but are available in the skybrary article.


El informe publicado por la CIAIAC, con fecha de aprobación del 30 de enero de 2013, se puede consultar en el siguiente enlace: Informe técnico.

La aeronave, modelo Embraer 145, con matrícula LX-LGX y distintivo de llamada LGL 3837, realizaba un vuelo entre el Aeropuerto Internacional de Luxemburgo (ELLX) y el Aeropuerto de Madrid/Barajas (LEMD) el día 04 de agosto de 2011. A las 16:57:55 h la aeronave se encontraba en las proximidades del aeropuerto de Madrid/Barajas, en descenso.

Las condiciones meteorológicas informadas por el METAR de las 17:00 h indicaba que la intensidad media del viento era de 8 kt y la dirección 210°, variable entre 190° y 260°, con ráfagas de hasta 20 kt. Según el informe proporcionado por la AEMET la visibilidad era de 10 km o más, sin fenómenos de tiempo significativo y sin nubes de importancia para las operaciones.

Según se indica en el informe el incidente se produjo porque la aeronave descendió por debajo de las altitudes mínimas del procedimiento de llegada normalizada, mínima de Guía Vectorial radar y mínima de sector, como consecuencia de que la tripulación, que debía mantener su separación con el terreno y conocer que la altitud mínima marcada por el procedimiento era 10.000 ft, descendió por debajo de ésta, sin confirmar con ATC si la autorización proporcionada era correcta. El controlador de Sector RES, utilizando una fraseología inadecuada, había autorizado a la aeronave a descender a 10.000 ft, ésta colacionó que descendía a 5.000 ft y el controlador no corrigió esta colación incorrecta. Además, contribuyó al incidente el hecho de que los controladores de Sector RES y Sector AIS tampoco detectaron que la aeronave había descendido por debajo de la altitud mínima del procedimiento y la de Guía Vectorial radar. El controlador de Sector AIS fue consciente de este hecho tras ser informado por la tripulación, después de que se activara el EGPWS de la aeronave y comenzaran el ascenso.

Sirva este incidente no sólo para modificar procedimientos, sino para valorar lo importante que es disponer de controladores bien formados, bien descansados y sin presiones externas (léase políticas, laborales, mediáticas, etc.), que puedan inducirles a cometer fallos. Los responsables políticos y sus jefes de AENA tienen la obligación de proporcionarles el adecuado ambiente de trabajo, para que puedan desempeñar sus funciones con las garantías debidas, en lugar de arrojarlos al circo mediático en el que llevan lidiando desde hace varios años.

domingo, 27 de octubre de 2013

ARTÍCULOS DEL FORO DEL TRANSPORTE Y EL FERROCARRIL: EL CAOS EN FOMENTO Y LA CRISIS DE IBERIA.


Adjuntamos dos artículos publicados en el http://forodeltransporteyelferrocarril.blogspot.com.es/.

El caos de Fomento: La Ministra debe cesar al secretario de Estado, el presidente de AENA y su jefa de Comunicación

Con un sólo día de diferencia el secretario de Estado de Fomento, Rafael Catalá y el presidente de AENA se han pronunciado sobre el futuro de las tasas aéreas, a las que nos referíamos en nuestro post del otro día "La crisis de Iberia arrastra al abismo a Barajas". Según recoge el digital Madridiario.es, donde uno dijo digo, el otro dijo diego.

El secretario de Estado:
Aena no descarta rebajar las tasas del aeropuerto. Aena no descarta articular bonificaciones e incentivos en las tasas aeroportuarias del aeropuerto de Madrid-Barajas con el fin de que esta instalación recupere tráficos, según indicó el secretario de Estado de Infraestructuras, Rafael Catalá.

El presidente de AENA:
Aena no prevé bajar las tasas en los próximos años. El presidente de Aeropuertos Españoles y Navegación Aérea (AENA), José Manuel Vargas, ha manifestado este viernes que el gestor aeroportuario no tiene previsto bajar las tasas antes de 6 o 7 años, momento en que espera haber compensado el déficit tarifario de 250 millones que tiene en este momento.

¿En qué quedamos?

Ministra, no le queda otra que mandar a casa a estos colaboradores, que no son capaces de ponerse de acuerdo en algo que lleva tiempo y tiempo coleando y en el que el subordinado desdice y contradice lo dicho por su jefe. Y de paso, también, a su responsable de comunicación, que a esta hora, no ha dicho, todavía, ni mu. A tanto incompetente, les pagamos todos el sueldo.

Tampoco parece que van bien las cosas entre los presidentes de RENFE y ADIF, a costa del accidente de Angrois en lo que toca a distintas responsabilidades que señala el juez del caso y que, uno y otro, otro y uno, se echan respectivamente encima, tirando los balones al campo contrario.

Otro tanto cabe decir, aunque en este caso el partido se juegue contra un equipo de fuera de casa, del contencioso con las constructoras y aseguradoras por las autopistas radiales, así como por la endeblez de los contratos de mantenimiento de la red vial de autovías, que no se ven compensados suficientemente por las inversiones en las líneas de alta velocidad.

Algunos grupos de presión constructores ya han puesto a trabajar a despachos de lobbies para hacer llegar al presidente y a la clase política, en especial al PP , que esperan obtener algún beneficio en esta nueva época de vacas un poco más gordas que el gobierno afirma que está en ciernes.

Pero, la ministra, hasta ahora se niega a soltar un duro y, es más, les ha pedido dinero a los privados en cuantía de 1.300 millones, lo que hace que algunos empresarios de tronío, junto con destacados barones del Partido popular, se planteen que en remodelación ministerial, prevista para después del segundo aniversario de la llegada al gobierno, esta ministra sea removida a otra cartera, que, no se descarta haga bis en Sanidad, como ya lo hizo con Aznar, en sustitución de una más que chamuscada tocaya Ana Mato.

La crisis de IBERIA empuja al abismo a Barajas


Dicen que es, o era, la primera industria de Madrid. Algo así como el equivalente al 15% del PIB regional, o más. Era un aeropuerto potente, el mayor de nuestro país y, desde luego, el más emblemático. Hasta tal punto que estaba llamado a ser el gran "hub" (centralizador) de los tráficos transoceánicos españoles y europeos con Hispanoamérica.

Barajas sigue en caída libre

Barajas que, con la ampliación llevada a cabo de la T-4, tiene una capacidad de 70 millones de pasajeros-año, de los que la mitad corresponden a la T-4 y supone la cuarta parte del tráfico nacional que gestiona Aena, ha perdido más de 10 millones de pasajeros en los últimos ocho años. Hoy ocupa el sexto puesto por detrás de Estambul y no digamos ya la distancia que le separa de Londres y París, pero también de Fráncfort, Ámsterdam, e incluso Múnich. Cierra esta clasificación el barcelonés El Prat, en el nº 10 del ranking.

Nuestro gozo, en un pozo. El sueño se ha venido abajo de forma estrepitosa y como se suele decir: ella sóla se murió, y entre todos la mataron: la crisis, el AVE, Fomento, Aena, Iberia, la T-4 y todos acabaron rematando a Barajas. Vayamos por partes.

La crisis y el AVE


La crisis económica junto con la irrupción del AVE en algunas de las principales relaciones de movilidad interna, han sido determinantes para el cambio de sesgo a la baja que han tenido los tráficos del aeropuerto madrileño. Ello queda perfectamente reflejado, cual espejo, en el gráfico del corredor ferroviario Madrid-Barcelona con la caída del modo aéreo en dicho corredor y las ganancias de viajeros del AVE. Lo que uno pierde, casi, casi, el otro, en este caso el tren de alta velocidad, lo gana. Otro tanto puede decirse de los mordiscos que le han pegado el AVE a Málaga y Valencia.

La mala gestión de Aena y Fomento

Pero, no sólo es culpable de la caída de tráfico la crisis económica y el AVE, existen otros compañeros de viaje que también han ayudado a que las cosas estén hoy como están. El siguiente en la lista es el propio Ministerio de Fomento, con sus autoridades al frente, que con sus políticas han favorecido que Barajas haya entrado en caída libre. Lo menos que se puede decir respecto de la política de tasas y concesiones es que ha sido errática. Da lo mismo el color del gobierno. Desde la inefable e inepta ministra Magdalena Álvarez, y antes, hasta la actual titular, la gestión de las tasas aeroportuarias ha sido un desastre. Las tasas aeroportuarias, denunciamos, han sido un instrumento para otras cosas extra-aeroportuarias.

Inversiones faraónicas: la T-4

Aena, el administrador aeroportuario siempre ha sido dado al faraonísmo. Y si no había dinero, pues se endeuda uno y … tira pá lante. Así se ha llegado a la deuda de más de 12.500 millones de euros que hoy la corroe. Y nada extraño a esto ha sido la celebérrima T-4, digna obra de haber sido propiciada por el mayor despilfarrador de los faraones, un tal Ruiz Gallardón.

Una cosa es ampliar la capacidad de un aeropuerto y otra, gastarse la mayor parte del dinero en arquitectos de minutas imposibles, cúpulas que dejan ridículas a las del Vaticano y los frescos de la Capilla Sixtina.

Todo esto son gastos de inversión, que luego se incrustan férreamente como gastos de mantenimiento por los siglos de los siglos. Mientras tanto, se resienten otro tipo de actividades, que son las generadoras de actividad aeroportuaria propiamente dicha y que influyen en el confort de los viajes y en la competitividad del precio de los slots y los servicios, decisivos para atraer a las compañías aéreas.

Después de tanta inversión, la T-4 está hoy infrautilizada, habiendo reducido sus vuelos en más de un 30% y pudiendo afirmarse que tres de cada cuatro pasajeros que han dejado de venir a Barajas, se deben a viajeros fallidos de Iberia.


La agónica situación de Iberia arrastra a Barajas

Hemos dejado para el final, aunque bien mirado debería ser la primera causa citada, la situación caótica de Iberia, entre la que ayudan sus altos costes de producción, que fue la línea de bandera española, antes y después de haber sido integrada en IAG, en su fusión, a todas luces, favorable para British Airways, ha repercutido en la situación del aeropuerto. Cada vez más se trasladan vuelos, a favor de la parte británica de la compañía, que son vuelos perdidos para Barajas. Así, por ejemplo, Iberia ha reducido su tráfico en la T-4 (que costó la friolera de 6.300 millones de euros) en más de un 30%, como consecuencia del severo ajuste de rutas, flota y personal, llevado a cabo.

Por lo que sabemos, en función de los últimos datos de Aena, en lo que va de año hasta Agosto la situación no mejoraba, sino todo lo contrario. De Enero a Agosto de 2013, inclusive, Barajas ha perdido un 14,3% de pasajeros respecto del mismo período de 2012, lo que equivale a decir que el aeropuerto madrileño caerá por debajo del 60% de su capacidad, lo que no ocurría desde 2006.

Y así siguen las cosas. Nadie hace nada. Todo el mundo hace que llora por las esquinas y las administraciones Fomento, Aena, Comunidad y Ayuntamiento, hacen lo de siempre. Es decir, nada. Y sólo se les ocurre lo de siempre: hacer una comisión, que es apostar para que nada se arregle. Como en la canción; paroles, paroles, paroles …Palabras. Así pues, cabe decir, que en caída libre, y bajando.