Mostrando entradas con la etiqueta AVIACIÓN. Mostrar todas las entradas
Mostrando entradas con la etiqueta AVIACIÓN. Mostrar todas las entradas
martes, 25 de marzo de 2014
EL AEROPUERTO DE MADRID SE LLAMARÁ AEROPUERTO DE ADOLFO SUÁREZ MADRID-BARAJAS
Fiel a su estilo de hacer las cosas, sin contar con nada ni con nadie y cuando y como a él le viene en gana, el actual presidente del Gobierno de España ha decidido que el Aeropuerto de Madrid-Barajas pase a denominarse Aeropuerto Adolfo Suárez Madrid-Barajas.
Así lo comunicó la ministra de Fomento, Ana Pastor, que ayer anunció el cambio de nombre del aeródromo madrileño “en reconocimiento a la figura del expresidente y a su contribución a la democracia". La ministra indicó que ayer mismo firmó la Orden Ministerial para su remisión al BOE con el fin de cambiar el nombre del aeropuerto madrileño. La ministra además dedicó unas palabras para ensalzar la figura de Adolfo Suárez, quien "forma parte de la historia de todos los españoles al ser la contribución más decisiva, junto con el rey, a la sociedad de la libertad y el bienestar". También destacó la talla humana de Suárez, "la de la tolerancia y respeto al otro, del trabajo y de estar en política para mejorar la vida de la gente".
La alcaldesa de Madrid, manifestó que "No me parece mal; (el aeropuerto) es algo emblemático para Madrid y para España, y Adolfo Suárez, evidentemente, es una persona absolutamente especial en nuestra democracia. El aeropuerto de Barajas sería una manera también de rendirle un homenaje". Sin comentarios.
En otros países hay varios ejemplos de aeropuertos, como infraestructuras con la trascendencia y repercusión internacional que transmiten, dedicados a gobernantes que han marcado una época en su país, como el aeropuerto John Fitzgerald Kennedy en Nueva York, Charles de Gaulle en París, Indira Gandhi en Nueva Delhi, Ataturk en Estambul, Benito Juárez en México D. F., el David Ben Gurión de Tel-Aviv o el Yasir Arafat de Rafah. Todas ellas figuras históricas conocidas y reconocidas internacionalmente.
Aunque también hay algún ejemplo un tanto grotesco como el Aeropuerto George Bush de Houston, y que suponemos fue un homenaje del hijo al padre. Adjuntamos las noticias publicadas en los medios digitales más importantes: El Gobierno cambia el nombre de Barajas por el de Aeropuerto Adolfo Suárez, El aeropuerto de Madrid Barajas se denominará Adolfo Suárez, y la editorial publicada en Aviación Digital, con cuya valoración coincidimos: Madrid-Barajas ASG/Nueva York JFK/París CDG.
En cualquier caso, y en esto coincidimos con la editorial de Aviación Digital, estas cosas no deben hacerse así, y menos aún cuando se maneja la figura del que fuera el presidente del consenso, el artífice del cambio político en España a través de los grandes acuerdos, el que fuera capaz de juntar las firmas de franquistas y comunistas, nacionalistas y centralistas, conservadores y socialistas, sindicatos de clase y empresarios, etc., y todo ello en la España de finales de los años 70.
Desde Las mentiras de Barajas opinamos que honrar la memoria de Adolfo Suárez debe hacerse manteniendo la memoria no sólo de sus logros, sino de cómo alcanzó esos logros, y esto se ha obviado en este homenaje, que al final quedará como una cuestión personal del infame Rajoy, a la que se sumarán o no los demás. Además pedimos que se restablezca la seguridad operativa en el Aeropuerto de Adolfo Suárez Madrid-Barajas, para evitar que el nombre de Adolfo Suárez, quien trajo la democracia a España, quede ligado a un accidente de dimensiones catastróficas, por la insidia y desidia de los responsables de AENA, la AESA y la Dirección General de Aviación Civil del Ministerio de Fomento. No deseamos que este homenaje se convierta en un caramelo envenenado póstumo a una de las grandes personalidades españolas del siglo XX y de nuestra historia.
viernes, 23 de marzo de 2012
PARALLEL RUNWAY OPERATION: EFFICIENT, SAFE AND COST EFFECTIVE, BUT NOT AT MADRID-BARAJAS INTERNATIONAL AIRPORT
This article, published in SKYbrary, deals with Parallel Runway Operation, as it is also considered in the Spanish legislation (Reglamento de Circulación Aérea).
The objective of operating on parallel or near-parallel runways (non-intersecting runways whose extended center lines have an angle of convergence/divergence of 15 degrees or less) is to increase capacity and gain operational flexibility using simultaneously different runways for take-offs and landings, as in London-Heathrow International Airport.
Many airports have implemented parallel runway operation to increase capacity (number of operations per hour) while maintaining high safety operational standards and requirements. Indeed the most efficient and widespread airport design is a set of parallel or near-parallel runways and a complementary set of intersecting runways used only for special wind conditions.
Madrid-Barajas International Airport consists of two intersecting pairs of parallel runways whose extended center lines have an angle of convergence/divergence of 38 degrees. These runways operate at the same time: one pair of runways for take-offs and the other for landings.
These are the so-called intersecting (intersecting or non-intersecting runways whose extended center lines have an angle of convergence/divergence of more than 15 degrees) simultaneous and segregated approaches and departures, a dangerous invention of the Spanish civil aviation engineers that resembles a highway crossing where the movement of traffic occurs at the same level and is not properly regulated by an authorized traffic officer or by traffic-control signals.
While parallel runway operation increases capacity and operational safety and flexibility, Madrid-Barajas International Airport intersecting simultaneous and segregated approaches and departures penalize capacity and operational flexibility and violate operational safety ICAO regulations: Annex 14 Aerodromes, Doc 4444 PANS-ATM, Doc 8168 PANS-OPS and Doc 9643 Manual on Simultaneous Operations on Parallel or near parallel Instrument Runways (SOIR).
Parallel Runway Operation
Source: www.skybrary.aero
Categories: Runway Incursion | Loss of Separation | Operational Issues
Objective
The main objective of the implementation of simultaneous operations on parallel or near-parallel runways is to increase runway capacity and aerodrome flexibility. The largest increase in arrival capacity is achieved through the use of independent approaches to parallel or near-parallel runways.
Under IFR, the safety of parallel runway operations is affected by several factors such as the accuracy of the surveillance radar monitoring system, the ability of controllers to intervene when an aircraft deviates from the ILS localizer course, the precision with which aircraft can navigate to the runway, and the time for reaction by the controller, or the pilot and/or the aircraft.
Modes of Operation
There are variety of modes of operation associated with the use of parallel or near-parallel instrument runways:
Simultaneous parallel approaches
- Mode 1, independent parallel approaches: simultaneous approaches to parallel instrument runways where radar separation minima are not prescribed between aircraft using adjacent ILS; and
- Mode 2, dependent parallel approaches: simultaneous approaches to parallel instrument runways where radar separation minima between aircraft using adjacent ILS are prescribed.
Simultaneous parallel departures
- Mode 3, independent parallel departures: simultaneous departures for aircraft departing in the same direction from parallel runways.
It should be noted that when the spacing between two parallel runways is lower than the specified value determined by wake turbulence considerations, the runways are considered as a single runway with regard to separation between departing aircraft.
Segregated parallel approaches/departures
- Mode 4, segregated parallel operations: simultaneous operations on parallel runways where one runway is used for approaches and landings, one runway is used for departures.
In case of segregated parallel approaches and departures there may be semi-mixed modes of operations.
Semi-mixed parallel operations
1 One runway is used exclusively for approaches while approaches are being made to the other runway, or departures are in progress on the other runway.
2 One runway is used exclusively for departures while other is used for both departures and arrivals.
Mixed parallel operations
All modes of operation are possible.
Factors Affecting Simultaneous Operations On Parallel Instrument Runways: Factors which may have an impact on the maximum capacity or the desirability of operating parallel runways simultaneously are not limited to runway considerations. Taxiway layout and the position of passenger terminals with reference to the runways may make it necessary for traffic to cross active runways, a situation which may not only lead to delays but also to a decrease of the safety level due to the possibility of runway incursions.
Factors to Consider When Determining the Mode of Operations: Theoretical studies and practical examples indicate that maximum aerodrome capacities can be achieved by using parallel runways in a mixed mode of operation. In many cases, however, other factors such as the land side/air side infrastructure, the mix of aircraft types, and environmental considerations result in a lower achievable capacity.
Other factors such as non-availability of landing aids on one of the parallel runways or restricted runway lengths may preclude the conducting of mixed operations at a particular aerodrome.
Because of these constraints, maximum runway capacity may, in some cases, only be achieved by adopting a fully segregated mode of operation, i.e. one runway is used exclusively for landings while the other is used exclusively for departures.
The advantages to be gained from segregated parallel operations as compared to mixed parallel operations are as follows:
a) separate monitoring controllers are not required;
b) no interaction between arriving and departing aircraft on the same runway and consequential reduction in the number of potential missed approaches;
c) an over-all less complex ATC environment for both radar approach controllers and aerodrome controllers; and
d) a reduced possibility of pilot error due to selection of wrong ILS.
Operational Issues
Parallel Runway Operation need to be carefully managed in such a manner as to minimise the risk of runway incursion, wrong runway use due misidentification. Closely-spaced parallel runways may affect the pilot situational awareness, distract the crew, or lead to crew confusion.
The essential requirement to be adopted during the approach and landing roll, when ATC landing instructions are received may be to identify the required runway and, during final approach, maintain an awareness of this runway (e.g.: LOC diamond (if available), runway heading, runway characteristic (width, length, lighting)), particularly when approaching parallel runways. A potential problem associated with closer runway spacings is the possibility the aircraft to make the approach to the wrong runway. There are at least two scenarios:
1 the pilot may misinterpret the approach clearance or may use the incorrect approach chart and line up on the wrong ILS localizer. This situation could be avoided if procedures are established to require confirmation of the runway assignment, i.e. verbal verification of the ILS localizer. Such procedures would reduce, but not eliminate, the risk of an aircraft approaching the wrong runway; or
2 the pilot on an instrument approach may, after reaching visual conditions, visually acquire and line up for the wrong runway. The situation of runway misidentification involves a correct approach, but visual acquisition of the wrong runway. Such an event might occur too quickly and too close to the threshold to be reliably detected or resolved by the controller. If this situation is determined to be a problem, some means of improving visual runway identification may be required.
Safety-Related Issues Affecting Independent Approaches to Closely-Spaced
Parallel Instrument Runways
Independent operations on closely-spaced parallel runways are significantly safety critical and should be undertaken only after considerable attention has been devoted to several safety-related issues. In particular, the issues listed below are contained in ICAO Doc 9643 Manual on Simultaneous Operations on Parallel or near parallel Instrument Runways (SOIR) need to be addressed before any implementation:
a) weather limitations — independent instrument approaches to parallel runways spaced by less than 1 525 m but not less than 1 035 m between centre lines should, as prescribed by the appropriate ATS authority, be suspended under certain adverse weather conditions including windshear, turbulence, downdrafts, crosswind and severe weather such as thunderstorms, which might increase ILS localizer deviations to the extent that safety may be impaired and/or an unacceptable number of deviation alerts would be generated;
b) ILS flight technical error — aircraft using the ILS localizer course is subject to errors from several sources, including the accuracy of the signal, the accuracy of the airborne equipment, and the ability of the pilot or autopilot to follow the navigational guidance (flight technical error (FTE)). Deviations from the ILS localizer course may vary with the runway under consideration; it is therefore essential that the FTE is measured at each installation and the procedures adapted to ensure that false deviation alerts are kept to a minimum;
c) communications — when there is a large deviation from the final approach track, communication between controllers and pilots involved is critical. For independent parallel approaches two aerodrome controllers are required, one for each runway, with separate aerodrome control frequencies;
d) obstacle evaluation — since aircraft may need to be turned away from the final approach track at any point during the approach, an obstacle survey and evaluation must be completed for the area opposite the other parallel runway in order to safeguard early turns required to avoid potential intruding aircraft from the adjacent final approach;
e) pilot training — operators should ensure that flight crews conducting simultaneous independent approaches to parallel runways are adequately trained. It should be noted that the immediate missed approach manoeuvres, at the instruction of air traffic control, are different from the missed approach procedures in which pilots are already proficient;
f) controller training — training is required for air traffic controllers prior to being assigned monitoring duties. This training should include instructions in the specific duties required of a monitoring radar controller.
g) risk analysis — a risk analysis using available data indicating that the probability of having a miss distance of less than 150 m (500 ft) between aircraft is expected to be less than 1 per 56 000 000 approaches. Wherever independent approaches to closely-spaced parallel runways is envisaged, a risk analysis is completed for each location to ensure satisfactory levels of safety;
h) airborne collision avoidance system (ACAS) — during operational evaluations of ACAS II, some unnecessary missed approaches occurred as a result of “nuisance” resolution advisories (RAs). To remedy this situation, a number of modifications were made to the collision avoidance logic. However, these modifications did not completely eliminate such occurrences. Accordingly, the use of “traffic advisory (TA) only” mode during parallel approach operations should be recommended and indicated on the published approach charts;
i) transponder failure — If an aircraft without an operating transponder arrives at an aerodrome, ATC will create a gap in the arrival flow so that the aircraft will not require monitoring. If an aircraft transponder fails during an instrument approach, the monitoring radar controller will instruct any adjacent aircraft to cancel their approach;
j) fast/slow aircraft — if a fast aircraft deviates towards a slower aircraft on the adjacent approach, the slower aircraft may not be able to move away fast enough to assure safe spacing. ATC will create a gap in the arrival flow to safeguard the approaches of slower aircraft;
k) approach chart notation — the charts showing instrument approach procedures to runways used for simultaneous parallel instrument operations should indicate such operations, particularly using the term “closely-spaced parallel runways”. The terminology should be reflected in the title of the approach chart including the runway identification;
l) unnecessary cancelled approaches — an unnecessary cancelled approach is a situation in which the monitoring radar controller initiates a cancelling approach and the deviating aircraft subsequently remains in the normal operating zone (NOZ). The number of alerts, both true and false, should be monitored as a method of assessing the performance of the system. It may be necessary to amend the parameters of the alerting mechanism if too many false alerts are experienced; and
m) autopilots — older autopilots predominantly in use in aging aircraft do not provide significant FTE reduction. Autopilots manufactured today are considerably more advanced and the FTE could be reduced if they were used during simultaneous ILS operations.
Safety-Related Issues Affecting Dependent Approaches to Closely-Spaced Parallel Instrument Runways
The minimum spacing between two aircraft in the event of a deviation is calculated using techniques similar to those used for independent parallel approaches.
Two factors apply:
1 since the radar separation is applied diagonally, less distance between runways means a greater in-trail distance between the aircraft; and
2 less distance between runways also means that the deviating aircraft crosses the adjacent approach track more quickly.
Near-Parallel Runways
Near-parallel runways are non-intersecting runways whose extended centre lines have an angle of convergence/divergence of 15 degrees or less.
No special procedures have been developed as yet for simultaneous operations to near-parallel runways. Each situation is considered on a case-by-case basis and is dependent on a number of variable conditions.
New Concepts and Procedures
In order to maximise the capacity there are some concepts such as High Approach Landing System (HALS) that was developed and deployed (for a given period of time) to allow aircraft to land simultaneously on closely spaced parallel runways at Frankfurt Airport. The concept involved adopting a second, strongly displaced landing threshold for the southern runway to mitigate against wake turbulence by flying above the vortices of the leading aircraft.
Related articles and further readings were not included but are available in the skybrary article.
jueves, 25 de agosto de 2011
AENA SACRIFICA LA SEGURIDAD PARA REDUCIR LOS RETRASOS
Las distancias de seguridad se establecen en función de la velocidad, la capacidad de reacción, los sistemas de control y comunicación y los procedimientos operativos.
De fácil comprensión para los responsables de la Dirección General de Tráfico, que nos inundan de mensajes sobre la maldad de las prisas y la bondad de mantener distancias de seguridad generosas entre los vehículos con el fin de evitar accidentes, y tan difícil de entender para los irresponsables de AENA, que son incapaces de asumir que la seguridad es lo primero y la sacrifican en el altar de su incompetencia; porque es su incompetencia la causa de los retrasos endémicos que sufren los aeropuertos españoles (excepto algunos, entre los que se encuentran Huesca, León, Ciudad Real y Castellón.)
Nos informa Lara Otero en el diario El País que AENA implantará las nuevas separaciones mínimas entre aviones que había anunciado en junio, a partir del próximo 22 de septiembre.
Las nuevas mínimas de separación serán de cinco millas en vez de las ocho actuales (9,26 kilómetros en vez de 14,82) para los vuelos en ruta y de tres millas en lugar de cinco para (5,56 kilómetros en lugar de 9,26) los aviones que se aproximen a los aeropuertos con carácter general, si bien en los de Madrid, Barcelona y Palma se permitirán 2,5 millas (4,63 kilómetros) de separación en determinados casos (siempre que esté operativo el radar de superficie) y solo en las últimas 10 millas.
Alega AENA que las nuevas mínimas de separación son las mismas que en otros países europeos como Francia, y que esta medida implica aumentar la capacidad del cielo español en un 15% de media, lo que redundará en menos retrasos. Esto sin duda incrementará la carga de trabajo de los controladores sin recibir ninguna formación porque, según AENA, no es necesario. Si esto es verdad entonces ¿por qué no lo hicieron antes?
¿Será esto como la promesa de equipararnos con Europa en precios mientras mantenemos unos salarios y pensiones tercermundistas?
Reducir las distancias mínimas de separación significa reducir los tiempos para evitar incidentes y accidentes. Un avión que vuela a 900 km/h tarda 7,4 segundos en recorrer una milla náutica, y uno que vuela a 500 km/h 13,3 segundos. Multipliquemos y tendremos el tiempo que tienen para reaccionar si se produce una pérdida de separación.
Recomendamos la lectura del debate de Aviación Digital sobre esta noticia y el artículo publicado también en Aviación Digital sobre los Factores que rigen la determinación de mínimas de separación de aeronaves, y que adjuntamos
Factores que rigen la determinación de mínimas de separación de aeronaves
1. GENERALIDADES 1.1. Antes de examinar los factores que deben considerarse en la formulación de criterios para la determinación de mínimas de separación de aeronaves, es necesario describir y definir determinados supuestos básicos en materia de control de tránsito aéreo que pueden tener una influencia importante en la cuestión.
1.1.1. El control de tránsito aéreo parte de la base de que la navegación de una aeronave se decide en la misma. Por lo general, el control de tránsito aéreo no se hace cargo de la navegación excepto en determinados casos en los que el controlador de tránsito aéreo puede conocer mejor los datos relativos a la posición de la aeronave que sus propios tripulantes.
A medida que el control de tránsito aéreo ha ido utilizando en mayor escala el radar terrestre, ha habido una apreciable tendencia a que los controladores se hagan cargo de algunos de los aspectos de la navegación.
En dichas operaciones las instrucciones de navegación (vectores) necesarias para iniciar y mantener la debida trayectoria de vuelo son determinadas y comunicadas por el personal de tierra del ATC (véase Libro Cuarto, Capítulo 10).
1.1.2. La determinación de las mínimas de separación de aeronaves se basa en la calidad de la información de que dispone el organismo encargado del control de tránsito aéreo. La determinación de la separación lateral se basará primordialmente en la precisión con que los pilotos puedan adherirse a una derrota asignada.
En muchos casos las mínimas de separación lateral se fijan en función de la anchura del espacio aéreo que pretende protegerse a lo largo de una ruta o aerovía determinadas. Dichas mínimas deben comunicarse a todo el personal ATC interesado.
1.1.3. El tiempo invertido en adoptar decisiones, en la coordinación y en la transmisión puede influir en la aplicación de las mínimas de separación longitudinal "en tiempo", no menos que la determinación de los criterios en que se basan dichas mínimas, especialmente cuando no existen las comunicaciones directas entre el piloto y el controlador.
Si bien factores tales como los retrasos en las comunicaciones, momento de la decisión y el tiempo empleado en la coordinación tienen todos su influencia en el proceso de control, la eficacia del control de tránsito aéreo y la determinación de la antelación necesaria para cursar las instrucciones de control a fin de asegurar el mantenimiento de la mínima observada, no son factores en que se basen los criterios de separación.
Además, los controladores de tránsito aéreo trabajan siempre con relaciones aproximadas y no esperan a que se produzcan las condiciones mínimas de separación entre aeronaves para adoptar sus medidas.
¿Qué riesgos supone reducir las mínimas de separación? En SKYbrary hay información detallada sobre la pérdida de separación y los riesgos asociados, y que mostramos.
Loss of separation
Source: www.skybrary.aero
Description
A defined loss of separation between airborne aircraft occurs whenever specified separation minima in controlled airspace are breached. Minimum separation standards for airspace are specified by ATS authorities, based on ICAO standards.
A loss of separation between aircraft which are responsible for their own separation by visual lookout is not subject to definition.
Usually, the occurrence of a 'near miss', termed an AIRPROX by ICAO, is defined only by the opinion of one or more of the parties involved, whereas Near Midair Collision (NMAC) is an AIRPROX that meets specified criteria.
Types of Loss of Separation
- Loss of separation may be either in a vertical or a horizontal plane, or both;
- Loss of separation between aircraft may be a consequence of a Level Bust;
- Loss of separation between aircraft may result in encounters with Wake Vortex Turbulence;
- Loss of separation from restricted airspace is dealt with under Airspace Infringement;
- Loss of separation from the ground is dealt with under CFIT.
(Loss of separation between aircraft on the ground is dealt with under Ground Operations)
RVSM If the required equipment is carried as prescribed, then the risk of loss of separation in RVSM airspace is no greater (and no less) than in non-RVSM airspace.
Effects
- Loss of separation from other aircraft may result in collision;
- Injury, especially to unsecured cabin crew or passengers, may result from violent manoeuvres to avoid collision with other aircraft;
- Injury to aircraft occupants may also result from a wake vortex turbulence encounter.
Defences
- Pilot situational awareness of the location and intent of other aircraft gained from listening to radio traffic, visual identification and monitoring and ACAS, especially when not in receipt of a ATS radar or procedural control or when operating outside controlled airspace;
- Standard Operating Procedures, both on the flight deck and in the ATSU, which detail procedures to be followed to reduce the risk of loss of separation;
- Aircraft onboard equipment which warns of potential collision with other aircraft (ACAS) and allows an appropriate procedural response to risk. However, note that not all aircraft are required to be fitted with ACAS - only civil turbine-powered aircraft having a maximum certified takeoff mass in excess of 5,700 kg, or a maximum approved passenger seating configuration of more than 19.(ICAO Annex 6 Part I Chapter 6 Para 6.18 and EU-OPS 1.668);
- Ground-based equipment designed to warn of potential collision with other aircraft (STCA).
- Ground-based equipment designed to warn of potential conflict between aircraft in flight (MTCD).
Typical Scenarios
ATCO-induced situations: flight clearance does not provide adequate separation from other traffic:
- Controller is aware but makes a misjudgement.
- Controller is unaware.
- A trainee Controller is being mentored and the mentor fails to intervene appropriately when the trainee allows a potentially hazardous situation to develop
- Failure in sector or unit co-ordination
Pilot-induced situations: Flight in controlled airspace (CAS) deviates from cleared track or level without clearance due to flight crew:
- Inattention to equipment malfunction;
- Mis-setting of aircraft equipment;
- Mis management of FMS inputs;
- Failure to follow ATC clearance;
- Avoiding a perceived (visual) loss of separation with another aircraft;
- Avoiding weather perceived as potentially hazardous when unable to make timely contact with ATC on a busy frequency;
- Failure to properly follow a TCAS RA, including failure to terminate the deviation in a prompt manner when the RA ceases which may lead to a 'chain reaction' causing secondary TCAS RAs for aircraft in the same vicinity at adjacent levels;
- Ineffective visual "look out" when operating VFR;
- Not flying instructed or expected speeds or rates of climb and descent which have been the basis of a controllers flight sequence management;
- Allows their aircraft to enter CAS without ATC clearance
Any of the above scenarios is exacerbated by high traffic density or a rapidly changing traffic situation and many can also lead to inadequate separation outside controlled airspace associated, for example, with military fast jet low flying. Entry to an ATZ outside CAS without clearance has also caused many losses of adequate separation.
Contributory Factors
- Lack of appreciation by IFR pilots of the absence of Separation Standards against VFR traffic within some classes of airspace
- Volume of traffic/Traffic density.
- Weather (e.g. convective activity or cleat air turbulence (CAT));
- Aircraft performance (e.g. high or low rate of climb or descent)
- Proximity of military operational or training areas.
- Flight outside Controlled Airspace
Solutions
- Encourage or mandate the use of high quality communication systems, Transponders (Mode C and Mode S) and ACAS;
- Improve standard of pilot and ATCO training, especially in:
- Air-ground communication safety;
- Loss of separation awareness;
- Crew resource management;
- Provide more and improved ATC safety nets, e.g. STCA.
- Safety Nets must be set up so as to generate low levels of Nuisance alerts whilst providing useful warning time.
Related Articles and Further Reading sections were not included but are available in the SKYbrary article.
Especialmente dedicado al Sr. Ministro de Fomento, al Director de Aviación Civil, a la Directora de la AESA y al Presidente de AENA, por la decisión, no incorrecta, sino muy arriesgada, poco meditada, poco elaborada y nada consecuente, para que conozcan los riesgos los informes sobre incidentes y accidentes provocados por pérdida de separación. ¿Recordamos los jueguecitos que se trae entre manos AENA cada vez que saca a pasear el avión de calibración de los ILS?
Reports relating to accidents and incidents which involved Loss of Separation.
Y os animamos a leer el magnífico artículo Separación Radar publicado en Alas de Plomo, y el debate sobre el mismo en Aviación Digital.
lunes, 10 de mayo de 2010
ANTE TODOS VOSOTROS NOS DESCUBRIMOS
… pero sobre todo y ante todo os mostramos nuestro reconocimiento, admiración y respeto.
Este conocido vídeo, de poco más de un minuto de duración, muestra el tráfico aéreo que tiene lugar en todo el mundo durante las 24 horas de un día.
Se deduce por la proyección de la luz solar sobre el planeta (el astro rey no se pone por completo en el Ártico, ni sale completamente en el continente antártico) que es verano en el hemisferio norte.
Los puntitos amarillos en movimiento, como abejas que se dirigen a la colmena, son los aviones en vuelo.
¿Cómo es posible gestionar esto? Con conocimiento, profesionalidad y unas indudables cualidades físicas y psíquicas, y que además les guste y se sientan orgullosos de ello y del servicio que prestan a la sociedad.
Desde Las mentiras de Barajas nos descubrimos: Nuestro reconocimiento, admiración y respeto a quienes lo hacen posible, a los controladores, pilotos, técnicos de mantenimiento, inspectores del Estado, trabajadores en plataforma, etc., a pesar de ministrillos, aenas, aesas, senasas, inecos, y demás parásitos.
Este conocido vídeo, de poco más de un minuto de duración, muestra el tráfico aéreo que tiene lugar en todo el mundo durante las 24 horas de un día.
Se deduce por la proyección de la luz solar sobre el planeta (el astro rey no se pone por completo en el Ártico, ni sale completamente en el continente antártico) que es verano en el hemisferio norte.
Los puntitos amarillos en movimiento, como abejas que se dirigen a la colmena, son los aviones en vuelo.
¿Cómo es posible gestionar esto? Con conocimiento, profesionalidad y unas indudables cualidades físicas y psíquicas, y que además les guste y se sientan orgullosos de ello y del servicio que prestan a la sociedad.
Desde Las mentiras de Barajas nos descubrimos: Nuestro reconocimiento, admiración y respeto a quienes lo hacen posible, a los controladores, pilotos, técnicos de mantenimiento, inspectores del Estado, trabajadores en plataforma, etc., a pesar de ministrillos, aenas, aesas, senasas, inecos, y demás parásitos.
Suscribirse a:
Entradas (Atom)