martes, 29 de julio de 2014
ACCIDENTE AÉREO DE LA COMPAÑIA SWIFTAIR OPERADO POR AIR ALGERIE EN MALI
Un MD-83, propiedad de la compañía aérea española Swiftair, vuelo AH5017 operado por la compañía argelina Air Algerie, procedente de Uagadugú (capital de Burkina Faso) y con destino a Argel, se estrelló el pasado jueves 24 de julio en un área semidesértica, a unos 90 kilómetros al sur de la ciudad de Gao, en la región de Gossi, al norte de Mali. El vuelo despegó de la capital de Burkina Faso a las 1:17 GMT (3:17 hora peninsular) y tenía la hora de llegada prevista a las 5:11 (07.11 hora peninsular). En el accidente fallecieron los seis miembros de la tripulación, todos españoles, y los 110 pasajeros que iban a bordo, entre ellos 51 franceses y 24 nacionales de Burkina Faso.
El avión, que desapareció de los radares y perdió el contacto con las autoridades de aviación civil argelinas cuando sobrevolaba el Sahel de Malí, aún a 500 kilómetros de la frontera con Argelia, fue localizado gracias a un dron de observación francés de la base de Niamey (Níger), tras una intensa búsqueda realizada por equipos de Francia, Argelia, Níger y Malí. De hecho las cajas negras están ya en manos de las autoridades francesas.
Lo último que detectaron los radares fue un imprevisto cambio de rumbo sobre el itinerario previsto, probablemente provocado por algún imprevisto meteorológico. Según esta hipótesis, la aeronave no habría soportado las inclemencias meteorológicas o las perturbaciones causadas debido al conocido como el FIT (Frente Inter Tropical). El Sahel, un paraje seco en el que apenas hay carreteras y en la que, en esta época del año, coincidente con la temporada de lluvias, las temperaturas pueden alcanzar los 45 grados y son continuas las tormentas eléctricas. De hecho esta zona tiene un mayor porcentaje de accidentes aéreos que el resto del planeta por sus pobres infraestructuras y complejidad climática. Desde 2009 a 2013 se han registrado 61 accidentes en el norte de África, con un porcentaje de 13,47 incidentes por cada millón de horas de vuelo, mientras que la media mundial está en solo 2,51 incidentes.
Aunque se trataron de especulaciones tras el atentado de Ucrania, en un primer momento se barajó la hipótesis de que el MD-83 sufriera algún ataque con un misil o una bomba colocada en su interior. Aunque un avión en pleno vuelo y a velocidad de crucero es muy difícil de alcanzar desde tierra con un misil portátil como los que suelen utilizar las guerrillas, con una presencia significativa en la zona. Además las autoridades de Burkina Faso se apresuraron a demostrar que el aeropuerto de su capital cuenta desde hace tiempo con detectores de explosivos y que, por lo tanto, ninguna bomba había podido pasar al interior de la nave. Los restos del avión, totalmente desintegrado, están muy concentrados en el lugar, lo que podría indicar que no hubo una explosión previa en el aire. Además en la zona se percibe un fuerte olor a queroseno, un indicio de que los depósitos de combustible no se fracturaron en el aire antes de chocar contra el suelo y que no ardieron por una eventual explosión en vuelo.
Swiftair, es una pequeña compañía con 30 aviones de medio o bajo tonelaje a su cargo. La mayoría de su flota es carguera y opera regularmente para compañías como Air Europa y Air Algèrie, o para organizaciones como la OTAN. Cuestión aparte, aunque importante, son las condiciones laborales con las que trabajan los empleados de la compañía; hecho denunciado por el SEPLA en el número 166 de 2013 de su revista Mach 82. Bajo el título "Swiftair institucionaliza la precariedad laboral", SEPLA denunció a la aerolínea por aplicar una política de ahorro de costes a costa de precarizar al límite la profesión de piloto.
Los seis miembros de la tripulación.
El avión es un MD-83, fabricado en 1996, y considerado por algunos expertos más frágil que el Boeing 727 a la hora de enfrentarse a las turbulencias que generan los choques de las masas de aire tropical continental, caliente y seco, contra el aire tropical marítimo, fresco y húmedo, que los más veteranos localizan en ese cruce aéreo del desierto. La aeronave había sido objeto de un control por parte de la Dirección General de la Aviación Civil francesa y una inspección más a fondo hace menos de un mes.
Tras el accidente y según la normativa aérea, se llevará a cabo una investigación que debería dirigir el país donde cayó el avión, Malí. Si no tuviera la capacidad suficiente para afrontarla podría delegarla en otra autoridad. Dada la inacción del gobierno español ante esta tragedia, a pesar de tratarse de una compañía española y que los seis tripulantes eran españoles, será el gobierno francés tomará las riendas de la misma.
Se puede consultar la información técnica en la web de la Aviation Safety Network (ASN).
Artículos relacionados
Perdido el contacto con un avión español que operaba con la aerolínea Air Algérie
Perdido un avión que iba a Argel con 119 pasajeros y siete tripulantes españoles a bordo
Hallados en Malí los restos del avión perdido con 116 personas a bordo
Francia confirma que no hay supervivientes del accidente de avión y apunta a la climatología
Francia recupera una caja negra del avión siniestrado en Malí
El tratamiento que ha dado el Gobierno de España al accidente de un avión de una compañía aérea española, si bien operado por Air Algerie, en el que toda la tripulación era española, es cuando menos sorprendente. Ha actuado como mero observador y lo ha tratado con la misma frialdad y lejanía como el accidente de Taiwán, ocurrido el día anterior, con la excepción del llamado gabinete de crisis que, conociendo al presidente del gobierno y su cuadrilla, no habrá pasado de ser un grupo de whatsapp.
Contrasta el dejar pasar los acontecimientos y esperar a ver si el avión aparece del gobierno español con la contundente y efectiva actuación de las autoridades francesas que, desde el primer momento, se implicaron en la búsqueda del avión siniestrado con determinación y medios.
Si lógica es la implicación francesa, por el gran número de pasajeros de esta nacionalidad y su influencia en la zona,, tibia e irresponsable ha sido la implicación española, teniendo en cuenta que la nacionalidad de la compañía propietaria de la aeronave y de toda la tripulación es española.
Recomendamos la lectura de la editorial publicada en Aviación Digital Francia se vuelca, España observa, tras el accidente del DAH5017, y que cada cual saque sus conclusiones.
Y nos fijamos en el hecho que comentamos anteriormente sobre la responsabilidad de la investigación y la pertinente observación que se realiza en Aviación Digital
También está la cuestión de quién realizará la investigación del siniestro. Teóricamente la competencia la tendrían las autoridades de Mali. En segundo lugar debería ser la CIAIAC española, puesto que la aeronave es de esta nacionalidad. Pero todo indica que también será Francia, mediante la BEA, la que lleve el peso de la investigación. De hecho las cajas negras parece ser que ya se estarían enviando a Francia para su apertura y análisis. También es cierto que a bordo de un Falcon del Ejército del Aire con destino a Bamako, habrían viajado 2 miembros de la CIAIAC española, junto con 5 policías y, aunque no totalmente confirmado, 2 personas de la compañía Swiftair, para participar en la investigación sobre el terreno, cuyo acceso a la zona 0, requiere un último trayecto de al menos 6 horas en coche por la sabana.
Este gobierno siempre ha mostrado una falta de sensibilidad y responsabilidad en sus actuaciones y veracidad en sus declaraciones, pero cuando hay vidas de por medio, esta forma de actuar es una traición a todos los ciudadanos españoles fuera de nuestras fronteras, que ya saben nunca tendrán el apoyo de su gobierno ni vivos ni muertos.
Si en Francia dio la cara el presidente de la República, Francois Hollande, ¿de qué se esconde el, por desgracia, todavía presidente Mariano Rajoy?
Desde Las mentiras de Barajas, expresamos nuestras condolencias y solidaridad a los familiares de las víctimas. Descansen en paz.
ACCIDENTE AÉREO DE LA COMPAÑÍA TRANSASIA EN TAIWÁN
46 personas fallecieron tras estrellarse un avión de la compañía TransAsia Airways cuando realizaba un aterrizaje forzoso en la isla de Penghu, al oeste de Taiwán, el pasado 23 de julio a las 19:06 hora local. El avión taiwanés, un bimotor ATR 72-500 (72-212A) que llevaba 14 años en servicio y tenía capacidad para 70 pasajeros, había partido con retraso de Kaohsiung, en el sur de la isla, con 54 pasajeros y 4 miembros de la tripulación a bordo, y se estrelló cerca del aeropuerto de Magong, en Penghu (también conocida como Pescadores).
Tras un primer intento fallido de aterrizaje debido a la fuerte lluvia y la mala visibilidad, el piloto volvió a pedir autorización para la maniobra, pero la torre de control perdió contacto con la cabina cuando el aparato se encontraba a una altura de 100 metros, y fue tras frustrar el segundo intento cuando se estrelló contra dos edificios, en la localidad de Hushi. Antes del accidente la torre de control del Aeropuerto de Macong perdió contacto con el avión.
La causa del accidente fue el mal tiempo, consecuencia del paso del tifón Matmo por la zona, y que desde primeras horas de la mañana había provocado intensas lluvias y fuertes vientos de más de 100 km/h a su paso por Penghu. Según la compañía aérea, el piloto, de 60 años y el copiloto, de 39, acreditaban cada uno más de 20.000 horas de vuelo. No obstante, la Comisión de Investigación de la Seguridad Aérea taiwanesa, que ya ha recuperado una de las cajas negras del aparato, abrirá una investigación para determinar si el accidente se ha debido al mal tiempo, a un fallo mecánico o un error humano.
Se trata del primer accidente aéreo mortal de un avión de pasajeros de esta línea aérea, y el quinto de una compañía taiwanesa en los últimos 25 años. El más grave de ellos ocurrió en el aeropuerto japonés de Nagoya, cuando un aparato de la línea aérea China Airlines se estrelló y dejó 264 muertos, según recuerda la agencia de noticias taiwanesa.
TransAsia, fundada en 1951, cubre sobre todo rutas internas taiwanesas, aunque también cuenta con diversas rutas a otros destinos asiáticos, en países como Tailandia, Camboya o Japón.
Fuentes: El Mundo, El País, Aviation Safety Network.
Datos técnicos disponibles es posible consultarlos en ASN
domingo, 20 de julio de 2014
ENGINE FAILURE DURING TAKEOFF: A SKYBRARY ARTICLE
Adjuntamos artículo de SKYbrary sobre fallo de motor durante el despegue. Una incidencia que en principio no debe causar mayores problemas, más allá de un buen susto, siempre que los procedimientos de fallo de motor, que son específicos de cada compañía y aprobados por la AESA, no escondan sorpresas y los aviones operen todos los motores; algo tan obvio que si nos dijeran que no es así lo tomaríamos como una broma de muy mal gusto.
Engine Failure During Takeoff - Multi-Engine Transport Category Jet Aircraft
Source: www.skybrary.aero
Categories: Loss of Control | Operational Issues
Description
In the early days of jet engine powered transport aircraft, engine failures, in all phases of flight, were a fairly frequent occurrence. Statistics from the 1960's indicate that failures resulting in inflight shutdowns occurred at an approximate rate of 40 per 100,000 flight hours (or 1 per 2,500 flight hours). This rate is the equivalent of every engine failing once every year. By contrast, the failure rate of the engines installed on current generation aircraft have a failure rate of less than 1 per 100,000 flight hours.
Infrequent as this might seem, engines do fail and a failure during takeoff has very serious safety of flight implications. The aerodynamic effects of the failure and the immediate actions by the flight crew, which are necessary to ensure an acceptable outcome, are similar to those in a light, twin engine aircraft. However, unlike their smaller cousins, the certification criteria for multi-engine transport category jet aircraft require that the aircraft be capable of achieving a specified minimum climb rate, that will ensure obstacle clearance, should an engine failure occur on takeoff.
Regulatory Requirements
The National Aviation Authority (NAA) for each sovereign state is responsible for issuing an aircraft type certificate, in accordance with the guidance provided in the ICAO Standards and Recommended Practices (SARPS), for aircraft that are registered within its jurisdiction. While the SARPS provide the agreed minimum requirements for type certification, each NAA has the right to insist that additional criteria be satisfied before an aircraft type certificate will be issued. Within the EASA states type certificates are issued by the European Aviation Safety Agency
Aircraft Type Certification
There are many safety and performance requirements that must be met before an aircraft will be issued a type certificate. For multi-engine, transport category jet aircraft, minimum runway requirements that allow the safe rejection or continuation of a takeoff in the event of a failure and the ability to comply with minimum specified engine out climb gradients and obstacle clearance criteria are both critically important.
Minimum Runway Requirements
Regulatory criteria for minimum runway requirements encompass multiple calculations inclusive of Takeoff Distance (TOD), Takeoff Run (TOR) and Accelerate Stop Distance (ASD). The most limiting of these criteria, based on aircraft weight and prevailing atmospheric conditions, defines the minimum runway required for takeoff. Note that, depending upon the regulations under which the aircraft certification is granted, these distances may have to take into consideration the runway distance lost during line-up.
Declared Distances
Takeoff Distance (TOD)
The Takeoff Distance on a dry runway is the greater of the following values:
• Distance covered from the brake release to a point at which the aircraft is 35 feet above the takeoff surface, assuming the failure of the critical engine at VEF (Engine Failure Speed) and recognized at V1
• 115% of the distance covered from brake release to a point at which the aircraft is 35 feet above the takeoff surface, assuming all engines operating
The Takeoff Distance on a wet runway is the greater of:
• Takeoff Distance on a dry runway (see above)
• Distance covered from brake release to a point at which the aircraft is 15 feet above the takeoff surface, ensuring that the V2 speed can be achieved before the airplane is 35 feet above the takeoff surface, assuming failure of the critical engine at VEF and recognized at V1
Takeoff Distance must not exceed the Takeoff Distance Available (TODA), with a clearway distance not to exceed half of the TODA
Takeoff Run (TOR)
Takeoff Run (TOR) calculations incorporate the operational advantage of a designated clearway when one is present on the departure runway. If no clearway exists, TOR = TOD.
When a clearway exists, the Takeoff Run on a dry runway is the greater of the following values:
• Distance covered from brake release to a point equidistant between the point at which VLOF (Lift-off Speed) is reached and the point at which the aircraft is 35 feet above the takeoff surface, assuming failure of the critical engine at VEF and recognized at V1
• 115 % of the distance covered from brake release to a point equidistant between the point at which VLOF is reached and the point at which the aircraft is 35 feet above the takeoff surface, assuming all engines operating
When a clearway exists, the Takeoff Run on a wet runway is the greater of:
• Takeoff Distance (TOD) wet runway
• 115 % of the distance covered from brake release to a point equidistant between the point at which VLOF is reached and the point at which the aircraft is 35 feet above the takeoff surface, assuming all engines operating.
Takeoff Run must not exceed Takeoff Run Available (TORA)
Accelerate Stop Distance (ASD)
Accelerate Stop Distance calculations assume the following:
• Delay between VEF and V1 = 1 second
• ASD is determined with the wheel brakes at the fully worn limit of their allowable wear range
• reverse thrust is not considered for a dry runway distance determination, it can be used for wet runway calculations
The Accelerate Stop Distance on a dry runway is the greater of the following values:
• Sum of the distances necessary to:
1.Accelerate the airplane with all engines operating to VEF
2.Accelerate from VEF to V1 (assumes that engine fails at VEF and first action to reject is taken at V1)
3.Come to a full stop
4.Plus an additional distance equivalent to 2 seconds at constant V1 speed
• Sum of the distances necessary to:
1.Accelerate the airplane with all engines operating to V1 (assumes that first stopping actions are taken at V1)
2.With all engines still operating come to a full stop
3.Plus an additional distance equivalent to 2 seconds at constant V1 speed
The Accelerate Stop Distance on a wet runway is the greatest of:
• ASD on a dry runway (see above)
• Sum of the distances on a wet runway necessary to:
1.Accelerate the airplane with all engines operating to VEF
2.Accelerate from VEF to V1 (assumes that engine fails at VEF and first action to reject is taken at V1)
3.Come to a full stop
4.Plus an additional distance equivalent to 2 seconds at constant V1 speed
• Sum of the distances on a wet runway necessary to:
1.Accelerate the airplane with all engines operating to V1 (assumes that first stopping actions are taken at V1)
2.With all engines still operating come to a full stop
3.Plus an additional distance equivalent to 2 seconds at constant V1 speed
Note: Depending upon the criteria under which the aircraft was certified, the additional 2 seconds distance equivalent might not be required
Accelerate Stop Distance must not exceed the Accelerate Stop Distance Available (ASDA)
Loss of Runway Length During Lineup
Declared distances such as TORA and ASDA are based on measurements from the runway threshold. However, unless the aircraft enters the runway from a point prior to the threshold, it is not possible to use the full length of the runway. Aircraft typically enter the takeoff runway from an intersecting taxiway. The aeroplane must then be turned to align it on the runway in the direction of takeoff. In some cases, it may be necessary to backtrack on the runway and turn through 180° before the takeoff run can be initiated. FAA regulations do not explicitly require airplane operators to take into account the runway distance used to align the aeroplane on the runway for takeoff. However, EASA regulations require that the applicable distance be taken into consideration. When required, the TODA and TORA must be reduced by the distance from the runway threshold to the main landing gear and ASDA reduced by the distance from the threshold to the nose gear. Manufacturers will provide minimum lineup distances required for both 90° and 180° turns.
Some Operators provide data which takes loss of runway length during lineup into account. All crews must be familiar with the assumptions made in the production of their own company’s data.
Engine Out Obstacle Clearance Profile
The Net Takeoff Flight Path for the engine failure case is divided into four segments. Three of these are climbing segments with specified minimum gradients which are dependent upon the number of engines installed on the aircraft and one is a level acceleration segment. A brief description of the four segments is as follows:
1.First Segment - depending upon the regulations under which the aircraft is certified, the first segment begins either at lift-off or at the end of the takeoff distance at a screen height of 35' and a speed of V2. On a wet runway, the screen height is reduced to 15'. Operating engines are at takeoff thrust, the flaps/slats are in takeoff configuration and landing gear retraction is initiated once safely airborne with positive climb. The first segment ends when the landing gear is fully retracted.
2.Second Segment - begins when the landing gear is fully retracted. Engines are at takeoff thrust and the flaps/slats are in the takeoff configuration. This segment ends at the higher of 400' or specified acceleration altitude. In most cases, the second segment is the performance limiting segment of the climb.
3.Third or Acceleration Segment- begins at the higher of 400' or specified acceleration altitude. Engines are at takeoff thrust and the aircraft is accelerated in level flight. Slats/flaps are retracted on speed. The segment ends when aircraft is in clean configuration and a speed of VFS has been achieved. Note that the third segment must be completed prior to exceeding the maximum time allowed for engines at takeoff thrust.
4.Fourth or Final Segment - begins when the aircraft is in clean configuration and at a speed of VFS. Climb is re-established and thrust is reduced to maximum continuous (MCT). The segment ends at a minimum of 1500' above airport elevation or when the criteria for enroute obstacle clearance have been met.
Each segment of the one engine inoperative takeoff flight path has a mandated climb gradient requirement. For example, a gross second segment climb gradient capability of 2.4%, 2.7% or 3.0% is required for two, three and four engine aircraft respectively. Similarly, the required gross gradients for the fourth segment are 1.2%, 1.5% and 1.7% respectively.
To ensure obstacle clearance while allowing for aircraft performance degradation and less than optimum pilot technique, the gross gradients are reduced by 0.8%, 0.9% and 1.0% respectively to calculate a net gradient. The obstacle identification surface (OIS), or obstruction envelope, starts at runway elevation at a point directly beneath the end of the takeoff distance (TOD) and parallels the net gradient profile of the climb segments. If an obstacle in the departure path penetrates the OIS, the slope of the OIS must be increased and both the net and the gross gradient slopes of the corresponding segment must also be increased to ensure that the minimum obstacle clearance criteria is met.
The aircraft net gradient capability, correctable for temperature, altitude and pressure, is published in the AFM performance data and, in actual operations, must ensure that the limiting obstacle in the departure path can be cleared by a minimum of 35'. If there is an obstacle within the departure path that cannot be avoided and would not be cleared by 35', the planned takeoff weight must be reduced until minimum obstacle clearance can be achieved. Note that, by regulation, turns immediately after takeoff cannot be initiated below the greater of 50'AGL or one half of the aircraft wingspan and, that during the initial climb, turns are limited to 15° of bank. Turning will result in a reduction in aircraft climb capability.
Take off Flight Path
To maximise the payload capability from any given runway, most operators develop and utilize emergency turn procedures. These procedures follow a specified ground track which minimises the affects of local obstacles and a specified vertical profile which complies with the more restrictive of certification or actual obstacle climb requirements.
Effects of Engine Failure
On the Runway
If a multi-engine aircraft suffers an engine failure during the takeoff roll, the aircraft will yaw towards the failed engine. If the airspeed at the time of the failure is at or above Vminimum control ground (Vmcg), directional control on the runway can be maintained utilizing only aerodynamic controls. At a speed below Vmcg, directional control will not be possible unless thrust on the operating engine(s) is (are) also reduced. In any event, if the airspeed at the time that the failure is recognised is less than V1, the takeoff must be rejected.
Airborne
If a multi-engine aircraft suffers an engine failure when airborne, there are two immediate aerodynamic effects. The initial effect is the yawing that occurs due to the asymmetry of the thrust line. The size of this initial yawing moment depends upon the engine thrust and the distance between the thrust line and the aircraft centre of gravity. The yawing moment is also affected initially by the rate of thrust decay of the ‘dead’ engine and ultimately by its drag.
The second effect is roll. This occurs when the aircraft continues to yaw towards the failed engine resulting in a decrease in lift from the ‘retreating’ wing and a yaw-induced roll towards the failed engine.
As well as the aerodynamic consequences of the failure, the performance penalty is very significant. While the failure of an engine in a twin engine aircraft represents a 50% loss of available power, it will result in a more than 50% loss of performance.
Flight Crew Actions
During pre-flight preparation:
• Using the Electronic Flight Bag or the appropriate performance charts, determine the maximum takeoff weight (MTOW) for the runway in use, anticipated atmospheric conditions and intended aircraft configuration
• Confirm that actual aircraft weight does not exceed the calculated maximum allowable weight
• Complete performance calculations to determine speeds and thrust settings (inclusive of reduced thrust criteria where appropriate or applicable)
• Review and brief the Emergency Turn procedure inclusive of routing, turns and turn altitudes, acceleration altitude and safe altitudes
During the takeoff roll:
• Use appropriate lineup technique to ensure charted runway length is available
• Apply thrust using manufacturer's recommended procedures
• Confirm actual thrust meets or exceeds calculated thrust
• In the event of an engine failure prior to V1, reject the takeoff
o ADVISE Air Traffic Control (ATC) that the takeoff has been rejected using appropriate emergency communication protocols
In the event of an engine failure after V1:
• Establish and maintain directional control with appropriate rudder input
• Rotate at Vr and establish a climb speed of V2
o If the failure occurs after the aircraft is airborne, a climb speed of between V2 and V2 + 10 is acceptable
• Utilise appropriate aileron input to maintain wings level. At, or near, VMinimum Control Air (Vmca), as much as a 5° bank away from the dead engine may be required
• When safely airborne and established in a positive climb, retract the landing gear
o Establish or maintain the Emergency Turn routing
• Initiate ECAM / EICAS / Emergency Checklist procedures as per manufacturer and Company policy
o Establish or maintain the Emergency Turn routing
• Maintain V2 and takeoff thrust until reaching acceleration altitude. Acceleration altitude will be the highest of 400' AGL, Emergency Turn procedure published acceleration altitude or Company standard acceleration altitude
o Establish or maintain the Emergency Turn routing
• At acceleration altitude, maintain takeoff thrust, level the aircraft (see note below) and accelerate to VFS retracting flaps on schedule.
o Establish or maintain the Emergency Turn routing
• Once in clean configuration, maintain VFS, resume climb and reduce thrust to maximum continuous
o Establish or maintain the Emergency Turn routing
• ADVISE ATC using appropriate emergency communication protocols
o note that if the Emergency Turn profile has or will result in a departure from the cleared routing, ATC should be notified as soon as it is practical to do so
• Reaching a safe altitude, comply with any enroute climb requirements, complete any appropriate emergency or QRH checklists, determine plan of action (diversion or recovery) and advise ATC
Note: The acceleration profiles utilised by VNAV and FLCH modes do not necessarily command the aircraft to fly level at Acceleration altitude in the event of an engine failure. With all engines operating, VNAV & FLCH will use the algorithm 60% climb, 40% acceleration. In the event of an engine failure, the algorithm is reversed with 40% climb, 60% acceleration. As a consequence, at light weights the APFDS may command a climb during the acceleration phase.
Defences
Crew members must make themselves familiar with the explanatory notes to their performance data. Only by gaining an understanding of the assumptions made in the calculations can best use be made of the data.
If aircraft engines were 100% reliable, engine failure during takeoff would never occur. Over the years, manufacturers have made great improvements in the reliability of their products and the failure rate of turbine engines has decreased with each generation. It is unlikely, however, that the potential for engine failure will ever be completely eliminated.
Maintenance personnel can reduce the risk of failure by ensuring that the engines are maintained to the manufacturer’s recommendations. Ground crew and flight crew must ensure during their preflight and postflight inspections that all fluids are adequate, that there are no obvious leaks or damage and that the fuel supply is free from water or other contamination.
Flight crew / dispatch performance calculations must ensure that the aircraft can meet regulatory requirements in the event of an engine failure during the takeoff.
Flight crew should have a thorough understanding of the aerodynamics of a failure and clearly understand the actions that must be taken should a failure occur.
Finally, crews must be completely familiar with their Company procedures which will always take priority.
Related articles and further reading were not included but are available in the skybrary article.
En el Aeropuerto Adolfo Suárez Madrid-Barajas, las maniobras para eludir la colisión con los puntos salientes del terreno que hay en la zona norte puede llevar a buscar al avión que despega por la pista 36L la ruta del valle del río Jarama, más plana, y con ello invadir la trayectoria de la aeronave de la 36R. Así mismo, las aeronaves que despegan por la pista 36R, en caso de fallo de motor, pueden buscar la misma ruta del valle del río Jarama, y con ello invadir la trayectoria de los que despegan por la pista 36L. Y aunque sea poco probable, ¿qué sucedería en caso de fallo de motor simultáneo de dos aviones que despegan a la vez por las pistas 36R y 36L? Sucedería que se encontrarían en el valle del Jarama. En el próximo artículo veremos que esto es una realidad y conocida por la AESA, la Dirección General de Aviación Civil, AENA, y demás.
Suscribirse a:
Entradas (Atom)