La seguridad aérea es de interés público y afecta a toda la sociedad (Javier Aguado del Moral)


In times of universal deceit, telling the truth becomes a revolutionary act (George Orwell)


Cuando el sabio señala la luna, el necio se queda mirando el dedo (Confucio)

viernes, 30 de marzo de 2012

¿DÓNDE ESTÁN LOS AFECTADOS POR EL RUIDO DE LOS AVIONES DEL AEROPUERTO DE MADRID-BARAJAS?


Un fantasma recorre Europa. Afectados por el ruido del tráfico aéreo de Alemania, Francia, Reino Unido Europa se han unido contra las fuerzas opresoras, aquellas que invocan el supuesto bien común, el desarrollo económico y el derecho al transporte, para condenar a millones de personas al sufrimiento. Esas fuerzas opresoras, únicas beneficiarias reales del caos social, ambiental y técnico que supone la proliferación masiva de vuelos por el cielo europeo, se ven incapaces ante el empuje de la revuelta social. La sociedad, cansada de sufrir y callar, sufrir y esperar, se ha levantado y muestra su hartazgo en multitudinarias expresiones colectivas de protesta y esperanza. La esperanza de hacer caer las viejas estructuras erigidas sobre sus hombros cansados, en busca de la liberación individual y colectiva que les devuelva una vida perdida entre ruidosos engendros voladores.


30.000 personas en Alemania tomaron las calles el pasado sábado para protestar contra la construcción de nuevos aeropuertos y la ampliación de los existentes: 10.000 en Frankfurt, 10.000 en Berlín, también Munich, Colonia, Bonn y Leipzig. Los residentes afectados están hartos; hartos de los políticos y de sus chanchullos, hartos de soportar el ruido nocturno, hartos de las invocaciones al desarrollo económico, hartos de la especulación aeroportuaria, ¿nos suena familiar?

La manifestación de Frankfurt

La manifestación de Munich


http://www.jbn.de/wir-ueber-uns/bildergalerie/picknick-im-terminal-2-243/

También en Francia, la protesta en Nantes:



Más información en la página web de UECNA.

¿Y dónde están los afectados por el ruido de los aviones del Aeropuerto de Madrid-Barajas? ¿Por qué los alemanes, británicos y franceses consiguen la supresión de vuelos nocturnos y la cancelación de planes de ampliación y los españoles nada? La respuesta no está en los gobiernos y operadores aeroportuarios, la respuesta está en los afectados, desunidos y enfrentados entre sí; más preocupados por quitarle la migaja al vecino que por recuperar su vida y dignidad. No entienden que nada hay más fuerte que un pueblo capaz de socializar el sufrimiento, porque el opresor está acabado. La lección, una vez más, nos la dan alemanes, británicos y franceses.

viernes, 23 de marzo de 2012

PARALLEL RUNWAY OPERATION: EFFICIENT, SAFE AND COST EFFECTIVE, BUT NOT AT MADRID-BARAJAS INTERNATIONAL AIRPORT


This article, published in SKYbrary, deals with Parallel Runway Operation, as it is also considered in the Spanish legislation (Reglamento de Circulación Aérea).

The objective of operating on parallel or near-parallel runways (non-intersecting runways whose extended center lines have an angle of convergence/divergence of 15 degrees or less) is to increase capacity and gain operational flexibility using simultaneously different runways for take-offs and landings, as in London-Heathrow International Airport.


Many airports have implemented parallel runway operation to increase capacity (number of operations per hour) while maintaining high safety operational standards and requirements. Indeed the most efficient and widespread airport design is a set of parallel or near-parallel runways and a complementary set of intersecting runways used only for special wind conditions.

Madrid-Barajas International Airport consists of two intersecting pairs of parallel runways whose extended center lines have an angle of convergence/divergence of 38 degrees. These runways operate at the same time: one pair of runways for take-offs and the other for landings.


These are the so-called intersecting (intersecting or non-intersecting runways whose extended center lines have an angle of convergence/divergence of more than 15 degrees) simultaneous and segregated approaches and departures, a dangerous invention of the Spanish civil aviation engineers that resembles a highway crossing where the movement of traffic occurs at the same level and is not properly regulated by an authorized traffic officer or by traffic-control signals.

While parallel runway operation increases capacity and operational safety and flexibility, Madrid-Barajas International Airport intersecting simultaneous and segregated approaches and departures penalize capacity and operational flexibility and violate operational safety ICAO regulations: Annex 14 Aerodromes, Doc 4444 PANS-ATM, Doc 8168 PANS-OPS and Doc 9643 Manual on Simultaneous Operations on Parallel or near parallel Instrument Runways (SOIR).

Parallel Runway Operation

Source: www.skybrary.aero

Categories: Runway Incursion | Loss of Separation | Operational Issues

Objective

The main objective of the implementation of simultaneous operations on parallel or near-parallel runways is to increase runway capacity and aerodrome flexibility. The largest increase in arrival capacity is achieved through the use of independent approaches to parallel or near-parallel runways.

Under IFR, the safety of parallel runway operations is affected by several factors such as the accuracy of the surveillance radar monitoring system, the ability of controllers to intervene when an aircraft deviates from the ILS localizer course, the precision with which aircraft can navigate to the runway, and the time for reaction by the controller, or the pilot and/or the aircraft.

Modes of Operation

There are variety of modes of operation associated with the use of parallel or near-parallel instrument runways:

Simultaneous parallel approaches

- Mode 1, independent parallel approaches: simultaneous approaches to parallel instrument runways where radar separation minima are not prescribed between aircraft using adjacent ILS; and

- Mode 2, dependent parallel approaches: simultaneous approaches to parallel instrument runways where radar separation minima between aircraft using adjacent ILS are prescribed.

Simultaneous parallel departures

- Mode 3, independent parallel departures: simultaneous departures for aircraft departing in the same direction from parallel runways.

It should be noted that when the spacing between two parallel runways is lower than the specified value determined by wake turbulence considerations, the runways are considered as a single runway with regard to separation between departing aircraft.

Segregated parallel approaches/departures

- Mode 4, segregated parallel operations: simultaneous operations on parallel runways where one runway is used for approaches and landings, one runway is used for departures.

In case of segregated parallel approaches and departures there may be semi-mixed modes of operations.

Semi-mixed parallel operations

1 One runway is used exclusively for approaches while approaches are being made to the other runway, or departures are in progress on the other runway.

2 One runway is used exclusively for departures while other is used for both departures and arrivals.

Mixed parallel operations

All modes of operation are possible.

Factors Affecting Simultaneous Operations On Parallel Instrument Runways: Factors which may have an impact on the maximum capacity or the desirability of operating parallel runways simultaneously are not limited to runway considerations. Taxiway layout and the position of passenger terminals with reference to the runways may make it necessary for traffic to cross active runways, a situation which may not only lead to delays but also to a decrease of the safety level due to the possibility of runway incursions.

Factors to Consider When Determining the Mode of Operations: Theoretical studies and practical examples indicate that maximum aerodrome capacities can be achieved by using parallel runways in a mixed mode of operation. In many cases, however, other factors such as the land side/air side infrastructure, the mix of aircraft types, and environmental considerations result in a lower achievable capacity.

Other factors such as non-availability of landing aids on one of the parallel runways or restricted runway lengths may preclude the conducting of mixed operations at a particular aerodrome.

Because of these constraints, maximum runway capacity may, in some cases, only be achieved by adopting a fully segregated mode of operation, i.e. one runway is used exclusively for landings while the other is used exclusively for departures.

The advantages to be gained from segregated parallel operations as compared to mixed parallel operations are as follows:

a) separate monitoring controllers are not required;

b) no interaction between arriving and departing aircraft on the same runway and consequential reduction in the number of potential missed approaches;

c) an over-all less complex ATC environment for both radar approach controllers and aerodrome controllers; and

d) a reduced possibility of pilot error due to selection of wrong ILS.

Operational Issues

Parallel Runway Operation need to be carefully managed in such a manner as to minimise the risk of runway incursion, wrong runway use due misidentification. Closely-spaced parallel runways may affect the pilot situational awareness, distract the crew, or lead to crew confusion.

The essential requirement to be adopted during the approach and landing roll, when ATC landing instructions are received may be to identify the required runway and, during final approach, maintain an awareness of this runway (e.g.: LOC diamond (if available), runway heading, runway characteristic (width, length, lighting)), particularly when approaching parallel runways. A potential problem associated with closer runway spacings is the possibility the aircraft to make the approach to the wrong runway. There are at least two scenarios:

1 the pilot may misinterpret the approach clearance or may use the incorrect approach chart and line up on the wrong ILS localizer. This situation could be avoided if procedures are established to require confirmation of the runway assignment, i.e. verbal verification of the ILS localizer. Such procedures would reduce, but not eliminate, the risk of an aircraft approaching the wrong runway; or

2 the pilot on an instrument approach may, after reaching visual conditions, visually acquire and line up for the wrong runway. The situation of runway misidentification involves a correct approach, but visual acquisition of the wrong runway. Such an event might occur too quickly and too close to the threshold to be reliably detected or resolved by the controller. If this situation is determined to be a problem, some means of improving visual runway identification may be required.

Safety-Related Issues Affecting Independent Approaches to Closely-Spaced
Parallel Instrument Runways


Independent operations on closely-spaced parallel runways are significantly safety critical and should be undertaken only after considerable attention has been devoted to several safety-related issues. In particular, the issues listed below are contained in ICAO Doc 9643 Manual on Simultaneous Operations on Parallel or near parallel Instrument Runways (SOIR) need to be addressed before any implementation:

a) weather limitations — independent instrument approaches to parallel runways spaced by less than 1 525 m but not less than 1 035 m between centre lines should, as prescribed by the appropriate ATS authority, be suspended under certain adverse weather conditions including windshear, turbulence, downdrafts, crosswind and severe weather such as thunderstorms, which might increase ILS localizer deviations to the extent that safety may be impaired and/or an unacceptable number of deviation alerts would be generated;

b) ILS flight technical error — aircraft using the ILS localizer course is subject to errors from several sources, including the accuracy of the signal, the accuracy of the airborne equipment, and the ability of the pilot or autopilot to follow the navigational guidance (flight technical error (FTE)). Deviations from the ILS localizer course may vary with the runway under consideration; it is therefore essential that the FTE is measured at each installation and the procedures adapted to ensure that false deviation alerts are kept to a minimum;

c) communications — when there is a large deviation from the final approach track, communication between controllers and pilots involved is critical. For independent parallel approaches two aerodrome controllers are required, one for each runway, with separate aerodrome control frequencies;

d) obstacle evaluation — since aircraft may need to be turned away from the final approach track at any point during the approach, an obstacle survey and evaluation must be completed for the area opposite the other parallel runway in order to safeguard early turns required to avoid potential intruding aircraft from the adjacent final approach;

e) pilot training — operators should ensure that flight crews conducting simultaneous independent approaches to parallel runways are adequately trained. It should be noted that the immediate missed approach manoeuvres, at the instruction of air traffic control, are different from the missed approach procedures in which pilots are already proficient;

f) controller training — training is required for air traffic controllers prior to being assigned monitoring duties. This training should include instructions in the specific duties required of a monitoring radar controller.

g) risk analysis — a risk analysis using available data indicating that the probability of having a miss distance of less than 150 m (500 ft) between aircraft is expected to be less than 1 per 56 000 000 approaches. Wherever independent approaches to closely-spaced parallel runways is envisaged, a risk analysis is completed for each location to ensure satisfactory levels of safety;

h) airborne collision avoidance system (ACAS) — during operational evaluations of ACAS II, some unnecessary missed approaches occurred as a result of “nuisance” resolution advisories (RAs). To remedy this situation, a number of modifications were made to the collision avoidance logic. However, these modifications did not completely eliminate such occurrences. Accordingly, the use of “traffic advisory (TA) only” mode during parallel approach operations should be recommended and indicated on the published approach charts;

i) transponder failure — If an aircraft without an operating transponder arrives at an aerodrome, ATC will create a gap in the arrival flow so that the aircraft will not require monitoring. If an aircraft transponder fails during an instrument approach, the monitoring radar controller will instruct any adjacent aircraft to cancel their approach;

j) fast/slow aircraft — if a fast aircraft deviates towards a slower aircraft on the adjacent approach, the slower aircraft may not be able to move away fast enough to assure safe spacing. ATC will create a gap in the arrival flow to safeguard the approaches of slower aircraft;

k) approach chart notation — the charts showing instrument approach procedures to runways used for simultaneous parallel instrument operations should indicate such operations, particularly using the term “closely-spaced parallel runways”. The terminology should be reflected in the title of the approach chart including the runway identification;

l) unnecessary cancelled approaches — an unnecessary cancelled approach is a situation in which the monitoring radar controller initiates a cancelling approach and the deviating aircraft subsequently remains in the normal operating zone (NOZ). The number of alerts, both true and false, should be monitored as a method of assessing the performance of the system. It may be necessary to amend the parameters of the alerting mechanism if too many false alerts are experienced; and

m) autopilots — older autopilots predominantly in use in aging aircraft do not provide significant FTE reduction. Autopilots manufactured today are considerably more advanced and the FTE could be reduced if they were used during simultaneous ILS operations.

Safety-Related Issues Affecting Dependent Approaches to Closely-Spaced Parallel Instrument Runways

The minimum spacing between two aircraft in the event of a deviation is calculated using techniques similar to those used for independent parallel approaches.

Two factors apply:

1 since the radar separation is applied diagonally, less distance between runways means a greater in-trail distance between the aircraft; and

2 less distance between runways also means that the deviating aircraft crosses the adjacent approach track more quickly.

Near-Parallel Runways

Near-parallel runways are non-intersecting runways whose extended centre lines have an angle of convergence/divergence of 15 degrees or less.
No special procedures have been developed as yet for simultaneous operations to near-parallel runways. Each situation is considered on a case-by-case basis and is dependent on a number of variable conditions.

New Concepts and Procedures

In order to maximise the capacity there are some concepts such as High Approach Landing System (HALS) that was developed and deployed (for a given period of time) to allow aircraft to land simultaneously on closely spaced parallel runways at Frankfurt Airport. The concept involved adopting a second, strongly displaced landing threshold for the southern runway to mitigate against wake turbulence by flying above the vortices of the leading aircraft.

Related articles and further readings were not included but are available in the skybrary article.

viernes, 16 de marzo de 2012

PRECARIEDAD LABORAL Y SEGURIDAD AÉREA


¿Está la seguridad laboral directamente relacionada con la seguridad en el empleo? Es decir, ¿están los accidentes laborales directamente relacionados con la precariedad en el empleo? Parece de sentido común, un trabajador temeroso de perder su empleo es una persona insegura y propensa a cometer errores, porque puede tener los pensamientos en cuestiones no relacionadas con la actividad que esté llevando a cabo en ese momento. Cuando el puesto de trabajo pende de un hilo, entre otras cosas, se duerme peor y esto conlleva irritabilidad y falta de concentración.

¿En qué condiciones laborales trabajan pilotos y controladores y demás colectivos del sector de la aviación comercial? Suponemos que tenemos un personal adecuadamente formado, algo que parece estar en cuestión para las nuevas generaciones de profesionales, pero ¿no están estirando la cuerda de las condiciones laborales al límite y corre el riesgo de romperse? Una pregunta sencilla ¿descansan lo suficiente?

Lo mismo que no querríamos que a nuestro hijo lo operase un médico que no puede dormir por las noches, afectado por el ruido de unos aviones que perfectamente pueden volar por el día sin provocar más contratiempo que la pérdida de unas horas de playa de bajo coste a unos turistas, ¿quién de nosotros volaría, sin un atisbo de preocupación, en un avión cuyo comandante teme por su futuro laboral o que no descansa lo suficiente?

Se informa al paciente de la habitación 747 que en breves instantes pasará al quirófano, donde un equipo de cirujanos y enfermeros, del que van a despedir al 50% por los recortes, procederá con su delicada operación de corazón.

O en versión aeronáutica:

Señores pasajeros, el piloto y en su nombre toda la tripulación, que por cierto se encuentran pendientes de un Expediente de Regulación de Empleo y perder su puesto de trabajo, les desean un feliz vuelo.


Señores pacientes, se informa que las extracciones para los análisis de sangre las realizará un técnico sanitario que lleva veinte horas de guardia a base de café bien cargados. Les pedimos que sean comprensivos y estén atentos a la aguja.

Y la versión aeronáutica:

Señores pasajeros, el piloto y en su nombre toda la tripulación, que por cierto llevan catorce horas volando y están que se caen de sueño, les desean un feliz vuelo. Les pedimos que permanezcan despiertos y alerta ante un posible episodio de somnolencia por parte de la tripulación.

¿Qué broma pesada es ésta? Que paren el avión que yo me bajo. Y la próxima vez que consulten Flightdutytimes.

Nos hacemos eco de unos artículos publicado en Aviación digital sobre las consecuencias personales que ha tenido el cierre de Spanair, el conflicto laboral que tiene los trabajadores de Iberia con la dirección por la creación de una línea de bajo coste y las peores condiciones laborales en la que cada vez desarrollan su labor los profesionales de la aviación.


Entre otros mangantes, al presidente de Iberia, Antonio Vázquez, lo deberían cesar por crear un conflicto laboral que puede afectar a la seguridad aérea, por desmantelar la compañía Iberia en favor de British Airways y por regalar el uso del Aeropuerto de Madrid-Barajas a los ingleses. Señor Vázquez, ¿por qué no hace públicos los acuerdos a los que ha llegado con BA, sus contratos y papeles en lo que se detallen qué beneficio personal obtiene de éste nuevo Tratado de Utrecht, en el que cede la soberanía de Madrid-Barajas a la pérfida Albión?

Iberia Expréss está previsto que empiece a operar el próximo 25 de marzo y, sorprendentemente, está inmersa en un proceso de selección de personal. Sin dudarlo, esto significará un elenco de nuevos directivos y un consejo de administración que repartirá generosos salarios y prebendas a costa de empleados en peores condiciones laborales, y billetes más baratos a costa de la seguridad aérea. Lo dicho precios más bajos a cambio de menos seguridad y más precariedad laboral. ¿Volarán los directivos de Iberia en Iberia Expréss o seguirán ocupando los asientos de primera clase?

Recomendamos la lectura de los siguientes artículos:

Sobre la toxicidad de los directivos españoles y la corrosión en las compañías, una carta al director de Alejandro Crespo Leboreiro, ex Piloto de Spanair.


Una persona entrañable, Lennart Cromstedt, TCP de Spanair, a su llegada a la Puerta del Sol de Madrid, el pasado 3 de marzo de 2012 desde Barcelona. Una simbólica y efectiva muestra de coraje y fuerza mental de estos profesionales de la aviación española.

"...cuánto es preciso ganar para que un trabajador pueda defender sus derechos sin ser objeto de ataques populistas", artículo de An Eye in the Sky/Lo. C. Gutiérrez

Fatiga "intergremial", una amenaza exponencial... esa es la cuestión. El asombroso asunto del descanso, artículo de Controladores Aéreos y otras Hierbas

Y para terminar una nota de prensa de STAVLA, SITCPLA y USO en SPANAIR publicada en Aviación Digital que acrecienta la indignación hacia los bancos, La Caixa impide el pago de los salarios adeudados a los ex-trabajadores de Spanair.


¿No vende La Caixa que la obra social es su razón de ser, su alma? Autobombo para que caigamos en el anzuelo…Pero ¿no es ahí donde trabajaban y aún lo hacen, o al menos cobran, el yernísimo de España, Iñaki Urdangarín y su no-se-entera-de-nada-ni-pregunta-de-dónde-salen-los-6-millones-de-euros-que-cuestan-la-casita-donde-viven Cristina Borbón?

¿De verdad somos tan ilusos para creer de verdad que todo esto no afecta a la seguridad aérea?

Incluimos un extracto del artículo de Cristina Antón:

Dice el piloto de Iberia...
"Esto así no va a acabar bien, va a pasar algo, y cuando pase algo todos nos echaremos las manos a la cabeza"
Ya tuvimos el accidente de Spanair y no hemos aprendido nada: falta de sueño, prisas, presiones...más de lo mismo.
Tanto va el cántaro a la fuente que al fin se rompe, luego no digáis que no os avisamos.

jueves, 8 de marzo de 2012

HAZARD IDENTIFICATION: A SKYBRARY ARTICLE


Adjuntamos artículo de SKYbrary sobre identificación de riesgos y contingencias, aspecto básico en la seguridad aérea.

También nos hacemos eco de la noticia Grandes llamaradas solares llegan a la Tierra publicada en El Mundo, en la que se advierte de los posibles riesgos biológicos para astronautas, pasajeros y tripulaciones en vuelos en altas latitudes, lo que probablemente implicará desvíos de ruta.


Hazard Identification

Source: www.skybrary.aero

Categories: Safety Management | Enhancing Safety

Definitions

Hazard

A hazard is anything with the potential to cause harm.

A hazard is any condition, event, or circumstance which could induce an accident (EUROCONTROL ESARR 4).

A hazard is any existing or potential condition that can lead to injury, illness, or death to people; damage to or loss of a system, equipment, or property; or damage to the environment.

A hazard is a condition that is a prerequisite to an accident or incident (FAA AC 120-92: Introduction to SMS for Air Operators).

Hazard Identification

Hazard identification is the process used to identify hazards.

ICAO Requirements

Recently approved changes to several Annexes of the Chicago Convention introduce harmonised requirements for the implementation and operation of safety management systems (SMS) by aircraft operators and aviation service providers. Within the organisational framework of the SMS, operators/service providers “shall develop and maintain a formal process for effectively collecting, recording, acting on and generating feedback about hazards in operations, based on a combination of reactive, proactive and predictive methods of safety data collection”.

Hazard Identification Sources

The safety assessment process in the Design and Certification process identifies and classifies most of the hazards, assesses the risks, and introduces controls - this is a good starting point for identifying the hazards to the operation and there should ideally be a clear link between design and certification and operations.

- Safety Reporting - includes safety occurrence reporting through mandatory and voluntary reporting schemes;

- Internal investigation of safety occurrences;

- Safety occurrence trend analysis;

- Information provided by personnel, from operational perspective and training;

- Analysed data from automated data collecting tools (e.g. flight data analysis (FDA) in the airline industry);

- Results from safety surveys and operational oversight safety audits carried out internally (by the operator/service provider) and by States;

- Monitoring of “day-to-day” normal operations and environment;

- Official State investigation results of accidents and serious incidents; and

- Information-exchange practices between operators/service providers.
(Note: The list of sources listed above is by no means full and comprehensive.)

Hazard Identification Methods

The SMS Working Group of the European Commercial Aviation Safety Team (ECAST) has produced guidance material on hazard identification for airline operators. The document provides a summary of a number of specific tools and techniques for hazard identification and lists their advantages and disadvantages.

Depending on the hazard identification sources and the approach to hazard identification, two groups of methods for identifying hazards can be defined:

- Reactive hazard identification methods - hazards are recognised through trend monitoring and investigation of safety occurrences. Incidents and accidents are clear indicators of systems’ deficiencies and should be therefore investigated to determine the hazards that played role in that event.

- Proactive hazard identification methods - hazards are identified analysing systems’ performance and functions for intrinsic threats and potential failures. The most commonly applied proactive methods are the safety surveys, operational safety audits, safety monitoring and safety assessments. Other proactive hazard identification methods, such as FDA, Line Operations Safety Audit (LOSA) and Normal Operations Safety Survey (NOSS) are specifically targeted at identifying hazards related to human performance.

In real life scenarios, both reactive and proactive methods provide an effective means of hazard identification. Incident investigation is still one of the largest contributors in identifying hazards. In successful safety management systems, the proactive approach for hazard identification is utilised extensively, so the hazard is recognised and addressed before it could turn into an occurrence.

According to the Future Aviation Safety Team (FAST) three complementary approaches should be used to identify hazards that affect safety of the global aviation system:

- The “Historic” approach is based on accident and incident investigation and analysis. It uses proven investigative techniques to discover all facts pertinent to a past aviation incident or accident, and thus identify opportunities for improvements meant to avoid future, similar accidents.

- The “Diagnostic” approach is targeted at identifying accident pre-cursors within the larger collections of information in various aviation safety reporting systems. There are many diagnostic processes being developed for application to the global aviation system.

- A “Prognostic” or “Predictive” approach is aimed at discovering future hazards that could result as a consequence of future changes inside or outside the global aviation system, and then initiating mitigating action before the hazard is introduced. Prognostic hazard identification informs design processes so that the hazards can be eliminated from the future, avoided in the future, or mitigated in the future.

EASA has recently published an opinion on Operational Suitability Data that addresses the issue of the link between certification and operation. Hazards identification performed at the operations stage should ideally refer to Design and Certification, where hazards were first considered and risks assessed and mitigated. In practice, this link is seldom done and should therefore be encouraged.

Scope of Hazards in Aviation

The scope of hazards existing in aviation operation environment is very wide. That is why hazard identification is a complex process as it considers extensive range of possible sources of failure. Depending on the nature and size of the organisation, its operational scope and environment there are different factors to consider during hazard identification. The following factors listed in ICAO Doc 9859 Safety Management Manual are examples of common hazard sources in aviation:

- Design factors, including equipment and task design;

- Procedures and operating practices, including their documentation and checklists, and their validation under actual operating conditions;

- Communications, including the medium, terminology and language;

- Personnel factors, such as company policies for recruitment, training and remuneration;

- Organisational factors, such as the compatibility of production and safety goals, the allocation of resources, operating pressures and the corporate safety culture;

- Work environment factors, such as ambient noise and vibration, temperature, lighting and the availability of protective equipment and clothing;

- Regulatory oversight factors, including the applicability and enforceability of regulations; the certification of equipment, personnel and procedures; and the adequacy of surveillance audits; and

- Defences, including such factors as the provision of adequate detection and warning systems, the error tolerance of equipment and the extent to which the equipment is hardened against failures.

Hazard Classification

Hazards Classification, the classification of the severity of Hazards, is half way to Risk Assessment.

Each hazard that is identified is to be evaluated and classified. This is done in order to determine whether the hazard is individual (i.e. bear consequence for specific operation/s) or systemic. Hazards are classified in terms of severity of consequences arising in case of occurrence and are recorded in a hazard log. This process is documented and organised into a database which facilitates the storage and retrieval of hazard data.

Hazard classification matrices are used by the operators/service providers and aircraft manufacturers for evaluating hazards. Hazards are assigned to 5 generic classes depending on their effect. It should be noted that the exact description of the possible effects may differ depending of the types of the aviation service provided.

The table below is an example of hazard severity classification matrix, provided in EUROCAE ED -78A.


Operational Safety Assessment Hazard Classification Matrix

Another important characteristic of hazards is their likelihood (frequency) of occurrence. The hazard severity and its likelihood of occurrence are used to assess the risk that a hazard can pose to the provision of an aviation service, in particular to aircraft operations and eventually to human life.

A structured approach to the identification of hazards ensures that, to the extent possible, all potential hazards are identified and assessed. The assessment of hazards should take into consideration all possible outcomes - from the least likely to the most likely. Hazard identification determines to a great extend the effectiveness of an organisation’s risk management process, as it provides the input for the other two risk management components, notably the Risk Assessment and Risk Mitigation.

Related articles and further readings were not included but are available in the skybrary article.

viernes, 2 de marzo de 2012

AENA VUELVE A LAS ANDADAS (MARZO DE 2012)


Después de muchas semanas de duro viento del norte, vuelven los vientos dominantes del sur-suroeste a Madrid.

Después de muchas semanas de operar el Aeropuerto de Madrid-Barajas en la así llamada configuración norte, parece que a los gestores de AENA se han olvidado de que cuando cambia el viento hay que cambiar la operación.

Recordamos que desde hace más de dos años, cuando entró en vigor primero el Real Decreto-ley 1/2010, de 5 de febrero, por el que se regula la prestación de servicios de tránsito aéreo, se establecen las obligaciones de los proveedores civiles de dichos servicios y se fijan determinadas condiciones laborales para los controladores civiles de tránsito aéreo, y después la Ley 9/2010, de 14 de abril, por la que se regula la prestación de servicios de tránsito aéreo, se establecen las obligaciones de los proveedores civiles de dichos servicios y se fijan determinadas condiciones laborales para los controladores civiles de tránsito aéreo, corresponde en exclusiva al proveedor civil de servicios de tránsito aéreo determinar la configuración operativa conforme a la demanda de tráfico y a los condicionantes técnicos y meteorológicos concurrentes, tal y como se establece en su punto 2 del artículo 2.

Artículo 2. Garantía en la prestación de servicios de tránsito aéreo.



2. Corresponde en exclusiva al proveedor civil de servicios de tránsito aéreo la organización, planificación, dirección, gestión, supervisión y control de la prestación de dichos servicios.

A tal efecto, dicho proveedor civil de servicios queda facultado para adoptar las medidas que en cada caso resulten necesarias y, entre otras, las siguientes:

a) Determinar la configuración operativa conforme a la demanda de tráfico y a los condicionantes técnicos y meteorológicos concurrentes.


Ésta es la fotografía que nos ha enviado un lector de Las mentiras de Barajas:


Se observa un avión despegando hacia el norte, y por la dirección de la humareda de un incendio agrícola se deduce que soplaba viento del sur.


Es decir, AENA estaba obligando a los aviones a despegar con el viento de cola. Hecho que está sucediendo durante los últimos días en los que durante las horas centrales del día sopla el típico y dominante viento del sur-suroeste, de más o menos intensidad, de la todavía incipiente primavera.

Entre la fotografía anterior y ésta hay una diferencia, un accidente con 154 personas fallecidas. El viento es el mismo.


Que los aviones pueden operar con viento de cola nadie lo duda, y que un trapecista puede hacer su función sin red tampoco. Si el trapecista comete un error se va contra el suelo, y sólo un milagro lo salvará; lo mismo pasará con un avión. En el incidente de Lanzarote fue el viento de cara, la red salvadora, no un milagro, el que evitó la tragedia. En Barajas, el 20 de agosto de 2008, no había viento de cara y no hubo milagro.